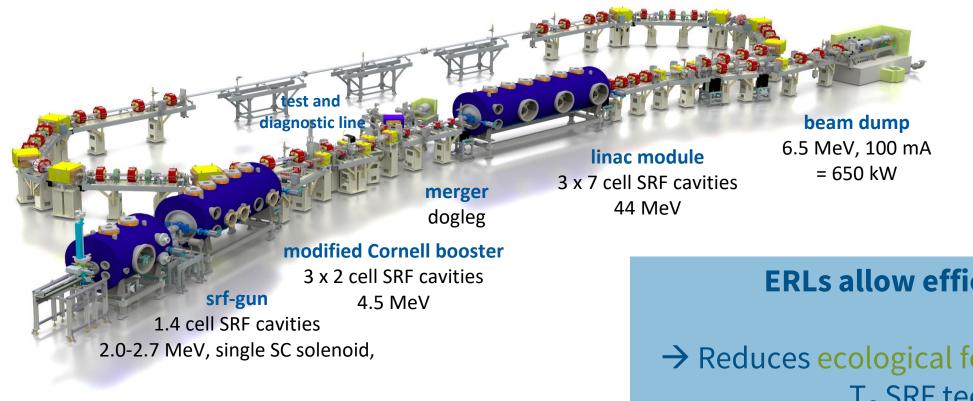
ERL 2022 66th ICFA Advanced Beam Dynamics Workshop on Energy Recovery Linacs

bERLinPro BECOMES SEALAB:

STATUS AND PERSPECTIVE OF THE ENERGY RECOVERY LINAC AT HZB

A new perspective to combine Energy Recovery Linac and ultra-low emittance injector studies in a broad,

multi-application parameter space


• bERLinPro project accomplished in 2020, readiness of building, infrastructure, warm machine, diagnostics, cryo-plant and high-power RF stations

HIGHLIGHTS

- Commissioning of SRF photo-injector on-going, high quantum efficiency cathodes preparation, Laser system, high-power RF conditioning of SRF Booster module • couplers are on track to allow first beam from the injector first half of 2023
- Beam commissioning program in development to map the injector's parameter space from short pulse-low charge to, via medium average currents to high charge \bullet regime

bERLinPro: AN ENERGY RECOVERY LINAC DEMONSTATOR

A demonstration facility for ERL science and technology [1]

Possible application

- Multi-user light source: XFEL oscillator, EUV source
- High energy electron cooling for proton/ion beams
- Ultra high luminosity electron-ion collider (EIC, LHeC) ERL roadmap initiative
- High energy, high luminosity e+e- collider

Dealli ellergy (wiev

Laser freq. (MHz)

RF freq. (MHz)

 ϵ_{norm} (mm mrad)

Bunch charge (pC)

 I_{avg} (mA)

 $\sigma_{\rm t} \, ({\rm ps})$

• Compact radiation source, nuclear physics

ERLs allow efficient operation at high average brightness/luminosity with Linac class beam quality

→ Reduces ecological footprint of large-scale science, especially when combining with higher T_c SRF technology, vision of sustainable large-scale science driver

New developments:

Beam dynamics and manipulation: Merger, recirculation, beam break-up

Parameter	ERL	Injector/UED
Beam energy (MeV	50	6.5-10/2

100

1300

1300

1 (0.6)

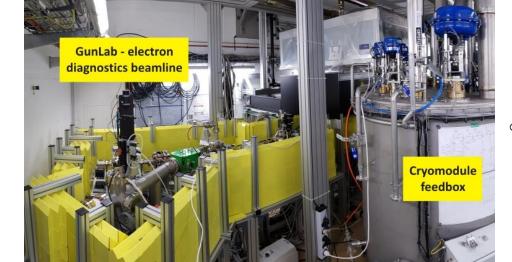
2(0.1)

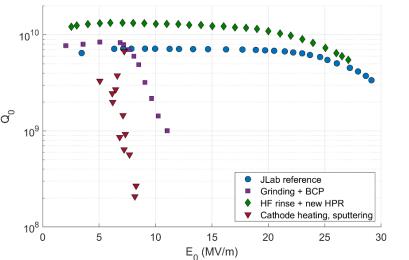
77

6-10/0.0025

50, 1300

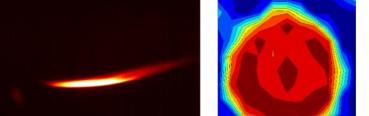
1300


0.6/0.03


0.02-2

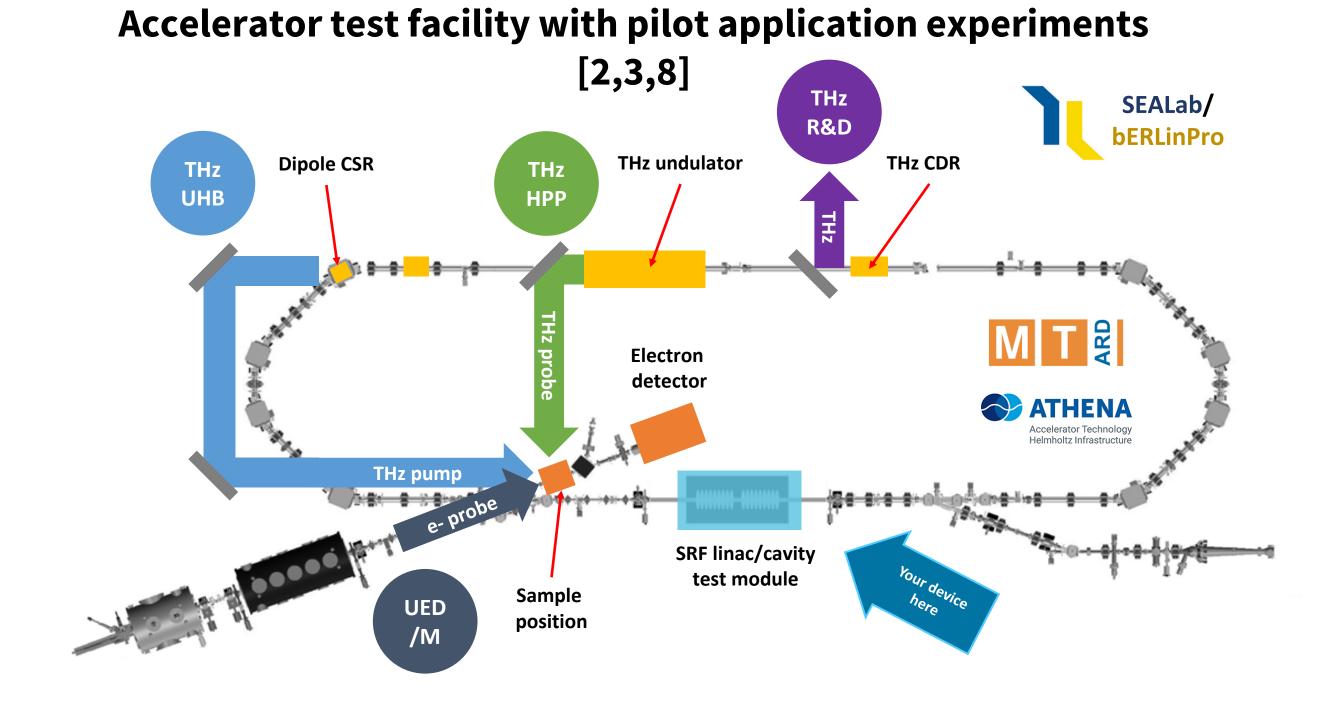
0.05-400

SELECTED RESULTS


Operation and recovery of SRF Photo-injector Cavity

Gunlab installation to characterize the SRF photo-injector for bERLinPro and test cathode transfer procedures

Development of Nb cavity recovery after accident during treatment at manufacturer [3]

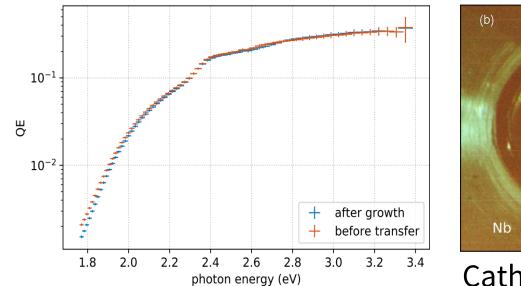

First beam signal on viewscreen[4] (left). Right: QE map of Cu cathode in proof of

Cs-K-Sb

- SRF Systems: Photo-injector, high power Booster, HOM damped LINAC
- Injector: High repetition rate laser, high QE cathode, high peak and average beam brilliance with high quality (low emittance, short pulse)
- Control of beam loss and radiation protection: Dark current suppression and Halo formation, high power beam dump
- High power continuous wave RF power sources
- Low impedance optimized machine
- Complete setup of the vacuum system under particulate free cleanroom conditions

TRANSITION FROM BERLINPRO TO SEALAB

Open the facility to Acclerator Research and Development (ARD) through Athena, pursue SRF research through Supralab and enable pilot experiments with external partners and industry.



Contribute to the European ERL Roadmap [9], PERLE collab.

- ERL injector studies including high charge plus high current macro-pulse studies
- Development for an efficient SRF Linac: Ferro-electric fast reactive tuner studies [10]: Saving RF power + detuning

principle experiment at Gunlab

High QE photo-cathode⁵ production [6,7]

16.8% at 515 nm (2.4eV) with Cs-K-Sb type cathode on Mo substrate plug.

Cathode plug in Nb cavity backwall

PERSPECTIVES

- Open up the machine for internal and external applications within Helmholtz ARD program and beyond:
 - Completion of the injector and linac/dump lines: Commissioning Injector with beam (up to 5-10 mA, up to few 100 pC, up to 6.5 MeV)
 - Support and contribute to UED pilot experiment at SEALab [8]
 - Offer the injector as a testbed to test and commission AI/machine learning techniques, digital twins
 - Map the complete attainable injector phase space for many applications: From FEL, UED to HEP[9]
 - Testing of new diagnostics, acceleration concepts and controls, beam test facility at Linac position
 - Collaborate with external partners for a 100 mA compatible Linac module in most efficient design,

compensation

Possibility to operate at 4K and above, reserve a cavity in the Linac for higher temperature operation

e.g. fast reactive tuners, optional 4K operation of single cavity in module of three (ERL initiative for HEP[9]) → sustainable Linac for ERL

REFERENCES

[1] M. Abo-Bakr et al., Status Report of the Berlin Energy Recovery Linac Project BERLinPro, in Proc. 9th Int. Particle Accelerator Conf. (IPAC'18), Vancouver, BC, Canada, Apr. 4,, pp. 4127-4130, doi:10.18429/JACoW-IPAC2018-THPMF034

[2] T. Kamps, et al., arXiv:1910.00881 [physics.acc-ph], 2019

[3] J.-G. Hwang, et al., Journal – Korean Physical Society 77 (5): 337-343, 2020

[4] A. Neumann et al., The BERLinPro SRF Photoinjector System - From First RF Commissioning to First Beam, in Proc. 9th Int. Particle Accelerator Conf. (IPAC'18), Vancouver, BC, Canada, Apr. 4,, pp. 1660-1663, doi:10.18429/JACoW-IPAC2018-TUPML053

[5] Y. Tamashevich et al, *Damage Recovery for SRF Photoinjector Cavities*, to be submitted to Superconductor Science and Technology

[6] M. Schmeisser et al., PRAB 21, 113401 (2018), doi:10.1103/PhysRevAccelBeams.21.113401 [7] S. Mistry et al., *Multi-Alkali Antimonide Photocathode Development for High Brightness Beams* Proc. IPAC 2022 - THPOPT019, 2022.

[8] B. Alberdi-Esuain et al., Prospects of Ultrafast Electron Diffraction Experiments in Sealab, Longitudinal Phase-Space Manipulation and Beam Stability, Proc. IPAC 2022 -WEPOTK060, 2022. [9] B. Kuske et al, *The European ERL Roadmap*, Proc. IPAC 2022 - TUOZSP3, 2022 [10] N.C. Shipman *et al.*, "A Ferroelectric Fast Reactive Tuner for Superconducting Cavities", in *Proc.*

SRF'19, Dresden, Germany, Jun.-Jul. 2019, pp. 781-788. doi:10.18429/JACoW-SRF2019-WETEB7

ACKNOWLEDGEMENT AND PARTNERS

MORE INFORMATION

Dr. Axel Neumann

Axel.Neumann@helmholtz-berlin.de Fon +49 30 8062 14669 Head of SEALab and SRF Systems group Humboldt Universität Berlin, Helmholtz-Zentrum Berlin

A. Neumann, B. Alberdi, T. Birke, P. Echevarria, E. Ergenlik, D. Eichel, F. Falkenstern, R. Fleischhauer, A. Frahm, F. Goebel, A. Heugel, F. Hoffmann, H. Huck, J.-G. Hwang, T. Kamps, S. Klauke, G. Klemz, J. Knobloch, J. Kolbe, J. Kuehn, B.C. Kuske, J. Kuszynski, S. Mistry, N. Ohm, H. Ploetz, S. Rotterdam, O. Schappeit, G. Schindhelm, C. Schröder, M. Schuster, H. Stein, E. Suljoti, Y. Tamashevich, M. Tannert, J. Ullrich, A. Ushakov, J. Voelker, C. Wang et al.