Circular-Linear energy recovery accelerator to probe the energy-frontier

I. V. Konoplev, S.A. Bogacz Ya. Shashkov

I.V. Konoplev et al 2022 JINST 17 P0101 https://iopscience.iop.org/article/10.1088/1748-0221/17/01/P01011/pdf

Introduction: Different types of limitations*

- 1. physical limits on high-gradient acceleration, high-field bending, beam size, beam brightness, and luminosity
- 2. technology-dependent limits e.g. material properties (critical current, tensile properties, ...)
- 3. societal imprints (e.g. size, cost, electrical energy)

* Frank Zimmermann, "the grand challenges and opportunities of ultimate high energy colliders", CPM, A10, Tuesday 6 October 2020

Introduction: Different types of limitations to be addressed

- 1. physical limits on high-gradient acceleration, high-field bending, beam size, <u>beam brightness</u>, threshold current and <u>luminosity</u>
- 2. technology-dependent limits e.g. material properties (critical current, tensile properties, ...)
- 3. societal imprints (e.g. size, cost, electrical energy)

Introduction: Different types of ERL limitations to be addressed

- 1. Physical limits (ERL): threshold current to increase beam intensity for ERL → brightness, luminosity
- 2. Societal impact (ERL): threshold current
 - 1. financial (construction and energy efficiency)
 - 2. societal cost (delivering blue sky research and giving immediate reward to society acceptance by society)

Introduction History: AERL (JAI, Oxford & JLab, 2015-2019)

Aim:

To surpass any existing designs of ERL in the e-beam current handling capabilities

Radio frequency cavities I Konoplev, G Burt US Patent 10,237,963

R. Ainsworth, G. Burt, I.V. Konoplev and A. Seryi, Asymmetric dual axis energy recovery linac for ultrahigh flux sources of coherent x-ray and THz radiation: Investigations towards its ultimate performance, Phys. Rev. Accel. Beams 19 (2016) 083502 [arXiv:1509.03675].

Introduction: JLAB dual axis cavity

[1] A. Hutton and H. Areti, *Accelerator stewardship test facility program* — *Elliptical twin cavity for accelerator applications*, JLAB-HEP15-03 (2015) and online at https://www.osti.gov/biblio/1209532.

[2] S.U. De Silva, H. Park, J.R. Delayen, F. Marhauser and A. Hutton, *Electromagnetic design of a superconducting twin axis cavity*, in proceedings of the 28th Linear Accelerator Conference (LINAC2016), East Lansing, MI, U.S.A., 25–30 September (2016).
[3] H. Park, F. Marhauser, A. Hutton, S.U. De Silva and J.R. Delayen, Development of a superconductingtwin axis cavity, in proceedings of the 28th Linear Accelerator Conference (LINAC2016), East Lansing, MI, U.S.A., 25–30 September (2016).

The cavity was used as a prototype during the optimisation It was considered as an indication that such structure can be machined

Parameter	Value	Units
Cavity height	202.5	mm
Cavity width	300.0	mm
Cavity length	100.13	mm
Cell length	81.13	mm
Iris curvature	8.0	mm
Beam aperture	60.0	mm
Beam axis separation	136.5	mm
V _{acc}	0.1	MV
$E_{\rm p}/E_{\rm acc}^{*}$	2.68	
$B_{\rm p}/E_{\rm acc}^{*}$	5.5	mT/(MV/m)
[R/Q]	60.1	Ω
G	320.8	Ω
$R_{\rm t}R_{\rm s}$	1.93×10 ⁴	Ω^2
LOM	1103	MHz
Nearest HOM	1806	MHz
Vt	26.4	V
*At $E_{\rm acc} = 1$ MV/m		

Pass band modes experimental studies at two axes

The RF coupler is located on one axis (active) while the field measurements are conducted on both axes

Red line active axis Blue line passive axis

I.V. Konoplev, K. Metodiev, A.J. Lancaster, G. Burt, R. Ainsworth and A. Seryi, *Experimental studies of 7-cell dual axis asymmetric cavity for energy recovery linac*, Phys. Rev. Accel. Beams 20 (2017)103501 [arXiv:1712.00494]

HOMs measurements

M. Topp-Mugglestone, I.V. Konoplev, H. Zhang and A. Seryi, Studies of high order modes in asymmetric dual-axis cavity, Appl. Phys. Lett. 113 (2018) 243503.

Cavity optimisation

I.V. Konoplev, Y. Shashkov, A. Bulygin, M.A. Gusarova and F. Marhauser, Ultimate energy recovery from spent relativistic electron beam in energy recovery linear accelerators, Phys. Rev. Accel. Beams 23 (2020) 071601

Cavity optimisation

I.V. Konoplev, Y. Shashkov, A. Bulygin, M.A. Gusarova and F. Marhauser, Ultimate energy recovery from spent relativistic electron beam in energy recovery linear accelerators, Phys. Rev. Accel. Beams 23 (2020) 071601

Asymmetric dual axis cavity with different number of cells on the axes

Type of cavity	TT&LL + TT	LL & TT+LL
Operating frequency (GHz)	1.300027	1.299977
Frequency of the nearest mode (GHz)	1.299311	1.29931
E_p/E_a	2.71	2.85
$B_p/E_a (mT/MV/m)$	6.1	6.35
<i>R/Q</i> (Ohm) - axis 1	380	381
<i>R/Q</i> (Ohm) - axis 2	289	291
Vz (MV) - axis 1	1.76	1.76
V_z (MV) - axis 2	1.53	1.54
<i>R/Q</i> (Ohm) - axis 1	203	211
<i>R/Q</i> (Ohm) - axis 2	281	296
G (Ohm) - operating mode	276.8	279.2

I.V. Konoplev, Y. Shashkov, A. Bulygin, M.A. Gusarova and F. Marhauser, Ultimate energy recovery from spent relativistic electron beam in energy recovery linear accelerators, Phys. Rev. Accel. Beams 23 (2020) 071601

Bridge optimisation

	- Resolved high field risk
٦.	- Improved the modes prov

- Improved the modes proximity
- Resolve the challenge with

multipacting

	Initial new bridge 11 cells/ TT end reg	U – структура 11 cells TLL end reg
Operating mode Frequency (GHz)	1.299995	1.299961
Nearest mode frequency (GHz)	1.299485	1.299418
E_p/E_a	2.91	2.28 (more than 20% improvement)
$B_p/E_a(mT/MV/m)$	6.32	4.43 (around 30% improvement)
R/Q (Ohm) axis 1	330	406
R/Q (Ohm) axis 2	333	273
V_z (MV) axis 1	1.65	1.82
V _z (MV) axis 2	1.64	1.49
<i>R/Q</i> (Ohm) - axis 1 nearest mode	249	196
<i>R/Q</i> (Ohm) - axis 2 nearest mode	240	338

Asymmetric dual axis cavity with different number of cells on the axes

I.V. Konoplev, Y. Shashkov, A. Bulygin, M.A. Gusarova and F. Marhauser, Ultimate energy recovery from spent relativistic electron beam in energy recovery linear accelerators, Phys. Rev. Accel. Beams 23 (2020) 071601

Circular-Linear energy recovery accelerator to probe the energy-frontier

Circular-Linear energy recovery accelerator to address

- 1. Physical limits (ERL): threshold current to increase beam intensity for ERL → brightness, luminosity
- 2. Societal impact (ERL): threshold current \implies
 - 1. financial (construction and energy efficiency)
 - 2. societal cost (delivering blue sky research and giving immediate reward to society acceptance by society)

"Triangular" or ILC-configuration

"Linear" configuration

Injection into storage ring

Conventional ERL based on dual axes asymmetric cavity

Injection into storage ring

Recirculating Energy Recovery system (RERS)

Recirculating Energy Recovery System (RERS)

Injection into storage ring

Recirculating Energy Recovery system

		RERS	PERLE	CBETA
	RF frequency (GHz)	1.3	0.801	1.3
760MeV 520MeV	Injection energy (MeV)	40	5-10	6
	Repetition rate (MHz)	CW	CW	325
	Particle Energy (GeV)	1	up to 1	0.15
	Beam current (mA)	100-1000	10-20	40 (injector current)
	Type of cavity	SRF dual axis	SRF single axis	SRF single axis
	∆E per cryo-module (MeV)	80 MeV	75 MeV	36 MeV
	Circumference (m)	<500	<100	79.1
1GeV beam	Beam transverse dimensions σ_{\perp} (µm)	10-100		52-1800
	Beam σ _z (ps/μm)	0.1-1/30-300	10/3000	4/1200

760MeV

Storage Ring

intermediate energy (1 GeV), large (2 km) diameter, weekly radiating (below 1kW) storage ring with indication of the FEL stations for photon production.

[1] P.F. Tavares, S.C. Leemann, M. Sjöström and Å. Andersson, The MAX IV storage ring project, J. Synchrotron. Radiat. 21 (2014) 862.
[2] P.F. Tavares et al., Commissioning and first-year operational results of the MAX IV 3 GeV ring, J. Synchrotron. Radiat. 25 (2018) 1291.

Storage Ring

Storage Ring

Illustration of an example of the FEL station with dog-bone beam line for the beam energy recovery

\frown		CLER-C StRg	ILC Cooling Ring	
$\left(\right)$	Circumference (km)	~6	~6	
	RF frequency (GHz)	1.3 GHz	1.3 GHz	
	Energy (GeV)	1 GeV	5 GeV	
	Number of microbunches	CW	1312	
5e+006	I₂v (mA)	100-1000		
5e+006 Beam σ _z μ	Beam σ _z μm	30-300	>300	
4e+006 5e+006 3e+006 5e+006	Application	Beam conditioning, Beam storage; photon factory	Beam storage, cooling and dumping.	
2e+006 5e+006 5e+005 0 -300 -3	200 -100 0 100 200 300 400 500 Z / mm	intermediate diameter, we storage ring v stations for pl	energy (1 GeV), large (2 km) ekly radiating (below 1kW) with indication of the FEL hoton production.	

Liner Energy Recovery Collider

Liner Energy Recovery Collider

1 GeV e-bean from SR 1 GeV e-bean to SR	n 10 km 00000 00000 00000 00000 Upstream set of A/D SRF sections of 2-axes structures, 10 km LERC 4 kr con	Downstream set of A/D SI structures, 10 km LERC UP Wr IP Wr n, ILC-like beam ditioning	1 GeV e-beam from SR 1 GeV e-beam 1 GeV e-beam 1 GeV e-beam to SR	
ſ	2666.00	LERC	ILC	
	Туре	ERL	LINAC SRF	
	Cavity type	SRF		
-	RF frequency (GHz)	1.3	1.3	
	Initial energy (GeV)	1	15	
-	Final energy (GeV)	250	250	
	Average beam current (mA)	>30	0.021	
F	Beam transverse dimensions σ_{\perp} at IP (nm)	6	6	
F	Beam σ _z μm (at IP)	0.3	0.3	
F	Luminosity x10 ³⁴ cm ⁻² s ⁻¹	>10	1.35	
F				

	System or unit	AC power (MW) ILC	AC power (MW) CLER-C at 10 MV/m (150 Gev CoM) (assumed luminosity 50*10 ³⁴)	AC power (MW) CLER-C at 20 MV/m (300 Gev CoM) (assumed luminosity 50*10 ³⁴)	AC power (MW) CLER-C at 30 MV/m (450 Gev CoM) (assumed luminosity 50*10 ³⁴)
	Modulators	58.1	6	6	6
	Other RF systems and controls	5.8	5.8	5.8	5.8
1 GeV	Conventional facilities	13.3	13.3	13.3	13.3
0000	Cryogenics (estimations guided by ILC numbers)[33]	32.0	37.5 - 50	150-200	338-450
	Total (ILC guided estimation) [33]	109.2	62.6-75.1	175.1-225.1	363.1-475.1
•'	L ₀ ×10 ³⁴ cm ⁻² s ⁻¹ per MW (aim)	0.007	~0.65	~0.22	~0.11
	Cryogenics (guided by achieved numbers) [43-45]		115.2	468	1058.4
	Total (guided by actually achieved numbers)[43-45]		140.3	493	1083.5
	L ₀ ×10 ³⁴ cm ⁻² s ⁻¹ per MW (achievable)		0.34	0.097	0.044

	System or unit	AC power (MW) ILC	AC power (MW) CLER-C at 10 MV/m (150 Gev CoM) (assumed luminosity 50*10 ³⁴)	AC power (MW) CLER-C at 20 MV/m (300 Gev CoM) (assumed luminosity 50*10 ³⁴)	AC power (MW) CLER-C at 30 MV/m (450 Gev CoM) (assumed luminosity 50*10 ³⁴)	
	Modulators	58.1	6	6	6	
	Other RF systems and controls	5.8	5.8	5.8	5.8	
GeV	Conventional facilities	13.3	13.3	13.3	13.3	
De	Cryogenics (estimations guided by ILC numbers)[33]	32.0	37.5 - 50	150-200	338-450	
00000	Total (ILC guided estimation) [33]	109.2	62.6-75.1	175.1-225.1	363.1-475.1	000
Acc	L ₀ ×10 ³⁴ cm ⁻² s ⁻¹ per MW (aim)	0.007	~0.65	~0.22	~0.11	>
	Cryogenics (guided by achieved numbers) [43-45]		115.2	468	1058.4	
	Total (guided by actually achieved numbers)[43-45]		140.3	493	1083.5	
	L ₀ ×10 ³⁴ cm ⁻² s ⁻¹ per MW (achievable)		0.34	0.097	0.044	

1 GeV

Conclusion

- The aluminium (7-cells) and copper (11-cells) dual axis asymmetric cavities were constructed
- Preliminary studies of HOMs and path-band modes were carried out and HOMs localisation has been demonstrated
 - The first design of the SRF dual axes asymmetric cavity has been completed
- Outlines of the new concepts of CLER –C and CLER-FEL have been presented

Acknowledgement:

Dr I.V. Konoplev would like to thank Sevastopol State University for partial support of the work via internal grant (42-01-09/169/2021-3). Dr. I. V. Konoplev would also like to thank STFC UK for partial support via grant (The John Adams Institute for Accelerator Science, ST/P002048/1). Work at Jefferson Lab has been supported by U.S. DOE under contracts DE-AC05-06OR23177 and DE-SC0012704. We would also like to acknowledge useful discussions with Dr. Ryan Bodenstein (JLAB). We would like to thank Dr. Andrew Hutton (JLAB) for useful suggestions and encouragements.

Thank you