HOM-Damping Studies in a Multi-Cell Elliptical Superconducting RF Cavity for the Multi-Turn Energy Recovery Linac PERLE

Carmelo Barbagallo

Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab)- Accelerator Physics group – RF section

Université Paris-Saclay

Co-authors: P. Duchesne, W. Kaabi, G. Olry, F. Zomer (IJCLab – Université Paris-Saclay)

R. A. Rimmer, H. Wang (Jefferson Lab, Virginia, USA)

PERLE (Powerful Energy Recovery Linac for Experiments): multi-turn ERL (Energy Recovery Linac) based on SRF technology currently under study and later to be hosted at **Orsay** (France)

Target Parameter	Unit	Value
Injection energy	MeV	7
Electron beam energy	MeV	500
Normalized Emittance $\Upsilon\epsilon_{x,y}$	mm∙mrad	6
Average beam current	mA	20
Bunch charge	рС	500
Bunch length	mm	3
Bunch spacing	ns	25
RF frequency	MHz	801.58
Duty factor	CW (Continuous Wave)	

Testbed for studying a wide range of accelerator phenomena

- 2 Linacs (four 5-cell 801.58 MHz SC cavities)
- 3 turns (164 MeV/turn): 3 passes "up" (E_{max}=500 MeV), 3 passes "down" (energy recovery phase)

The 5-cell SRF cavity for PERLE

The first 801.58 MHz 5-cell elliptical Nb cavity has already been fabricated and successfully tested at JLab in October 2017 [1].

Cavity Parameters	Unit	Value
Frequency	[MHz]	801.58
Temperature	[K]	2.0
Cavity active length	[mm]	917.9
R/Q	[Ω]	523.9
Geometry Factor (G)	[Ω]	274.6
B_{pk}/E_{acc} (mid-cell)	[mT/(MV/m)]	4.20
$E_{nk}^{ph}/E_{acc}^{acc}$ (mid-cell)	[-]	2.26
Cell-to-cell coupling k _{cc}	[%]	3.21
Iris radius	[mm]	65
Beam Pipe radius	[mm]	65
Mid-cell equator diameter	[mm]	328
End-cell equator diameter	[mm]	328
Wall angle	[degree]	0
Cutoff TE ₁₁	[GHz]	1.35
Cutoff TM ₀₁	[GHz]	1.77

HOM-damping for an ERL is a challenge due to the presence of many turns (undesired losses and multi-bunch beam instabilities)

Why are HOMs dangerous for beam dynamics?

- Monopole HOMs:
 - can lead to timing/phase errors and energy spread
 - contribute to extra dynamic heat losses in cavity walls
- Dipole HOMs:
 - can deflect the beam (kick) from its reference orbit: unstable beam motion, transverse emittance growth, beam loss

3D-Eigenmode simulations (cavity) – Frequency domain

Helmholtz equations	Boundary conditions		
$7^{2}\underline{\mathbf{E}} + \omega^{2}\mu\varepsilon\underline{\mathbf{E}} = 0$	$\mathbf{n} imes \mathbf{\underline{E}} = 0$ and	$\mathbf{n}\cdot \mathbf{\underline{H}}=0$ on	$\partial oldsymbol{\Omega}_{ ext{PEC}}$
$^{2}\underline{\mathbf{H}}+\omega^{2}\mu\varepsilon\underline{\mathbf{H}}=0$	$\mathbf{n}\cdot \mathbf{\underline{E}}=0$ and	$\mathbf{n} imes \mathbf{H} = 0$ on	$\partial \mathbf{\Omega}_{PMC}$

Wake function

 ∇

$$\mathbf{w}(\mathbf{r},s) = \frac{1}{q_1 q_2} \int_{-\infty}^{+\infty} dz q_2 [\mathbf{E}(\mathbf{r},z,t) + c\hat{\mathbf{z}} \times \mathbf{B}(\mathbf{r},z,t)]_{t=(s+z)/c}$$

Impedance in frequency domain (FFT of the wake function)

$$\mathbf{Z}(\omega) = \int_{-\infty}^{+\infty} dt \, \mathbf{w}(t) e^{-j\omega t}$$

- **BBU** analyses
 - Determine the impedance budget for monopole and dipole modes

HOM-coupler power transmission – Frequency domain

- Coupler optimization
- **RF-heating studies**

Assumption: PEC (Perfect Electric Conductor) on conducting walls (Nb) and interior domain of vacuum

The energy left behind q₁ is called **wakefield**.

3D-Eigenmode simulation: HOMs identification

In a cavity the beam excites a voltage along the so-called shunt impedance R_s

Longitudinal R/Q [Ω] $\frac{R}{Q_{l,n}} = \frac{\left|V_{l,n}(r=0)\right|^{2}}{\omega_{n}U_{n}}$ $\frac{R}{Q_{tr,n}} = \frac{\left|V_{l,n}(r=r_{0}) - V_{l,n}(r=0)\right|^{2}}{kr_{0}^{2}\omega_{n}U_{n}}$

Shunt Longitudinal impedance [Ω]

Higher the power extracted P_{ext} from the HOM-couplers, lower Q_L, and lower the shunt impedance for the HOMs

- **R/Q** represents the interaction between the beam and the RF field inside the cavity. It depends on the cavity geometry only.
- **Dangerous HOMs** have high R/Q values (TM011 monopole and TE111, TM110 dipole)
- Damping HOMs means reducing the shunt impedance, having a low loaded quality factor Q_L (in SRF cavities Q_L≈Q_{ext})

$$\frac{1}{Q_L} = \frac{P_{loss}}{\omega_n U_n} = \frac{P_{cav} + P_{ext,1} + P_{ext,2} + \cdots}{\omega_n U_n}$$

6

Wakefield simulation: Multi-beam Excitation Scheme and Customized FFT script

The implemented method allows to excite separately monopole, and dipole modes, suppressing unwanted modes [2].

Monopole modes

Dipole modes – polar 1

We built with JLab a customized FFT script in Python which allows solving impedance peaks more accurately than in CST (a factor 3 compared with the eigenmode solution) [3]

HOM coupler optimization

- HOM couplers are geometrically optimized according to the HOM spectrum ($Z_{||}$ and $Z_{\perp})$
- The S-parameters between the beam pipe port 1 and port 2 at the coaxial output of the coupler are studied.
- The DQW coupler exhibits a better monopole coupling for TM010 mode than the probe design.
- The hook coupler provides higher damping of the first two dipole passbands (TE111 and TM110)

BBU analyses

Threshold current for a single dipole HOM for the jth-pass in a multi-pass machine [4]*:

$$I_{th_{j}} = \frac{-2p_{j}c}{ek\left(\frac{R}{Q}\right)Q\sum_{j=1}^{N}\left(M_{12}^{L1,j}\cdot\frac{p_{in}^{L1,j}}{p_{out}^{L1,j}} + M_{11}^{A1,j} + M_{12}^{L2,j}\cdot\frac{p_{in}^{L2,j}}{p_{out}^{L2,j}} + M_{11}^{A2,j}\right)}$$

Supposing a beam current of 120 mA (PERLE total current), we can calculate the maximum allowed Q_{ext} to avoid beam instabilities as well as the impedance budget

●L1 P1 ●L2 P1 ●L1 P2 ●L2 P2 ●L1 P3 ●L2 P3 ▲L-1 P4 ▲L-2-P4 ▲L-1 P5 ▲L-2 P5 ◆L-1 P6 ◆L-2 P6

Maximum Allowed Qext for 6-passes - Dipole HOMs

•L1 P1 L1 P2 ●L2 P2 ●L1 P3 ●L2 P3 ▲L-1 P4 ▲L-2 P4 ▲L-1 P5 ▲L-2 P5 ◆L-2 P6

*Transfer matrices were provided by Dr. Sadiq Setiniyaz and Dr. Robert Apsimon, Lancaster University & Cockcroft Institute, Daresbury Laboratory.

Q_{ext} evaluation for a 2-HOM coupler scheme

- 2 Hook couplers (one coupler per side), rotated by 90° to coupler both dipole polarizations
- Compute the Q_{ext} at the coupler port for the excited dipole HOMs
- Compare the obtained Q_{ext} with the maximum allowed Q_{ext} from BBU analyses

- In general, the 2-Hook coupler scheme couples better TE111 and TM110 passbands than the 2-DQW coupler scheme
- 2-Hook scheme shows a Q_{ext} comparable to that one obtained in BBU analyses for the $2\pi/5$ TM110 mode
- 2-DQW scheme shows a Q_{ext} comparable to that one obtained in BBU analyses for the $\pi/5$ TE111 mode

HOM-damping schemes (5-cell cavity + HOM couplers)

• **Objective**: extract the energy of the dangerous HOMs from the cavity through HOM couplers.

- The damping scheme with four DQW couplers shows promising results in damping both monopole and dipole HOMs
- Computed impedance levels are below the analytically-computed beam-stability limits for both configurations, however very low margin for TM110 mode in 2H2P configuration.

RF-Heating Analysis (COMSOL Multiphysics[®]) – Fundamental Mode

HOM coupler fabrication

- Mechanical design of the Hook coupler for the PERLE cavity has been made at IJCLab (Samuel Roset, Patricia Duchesne, Gilles Olivier, Guillaume Olry IJCLab)
- The coupler has been 3D printed in epoxy by CERN Geneva Polimer Lab, and it will be copper coated (Sébastien Clement, Simon Barriere, Pierre Maurin, Romain Gerard)

• The coupler will be installed next week at JLab on a 1-cell 801.58 MHz copper elliptical cavity to test HOM coupler performance.

Conclusions:

- Eigenmode and wakefield analyses were carried-out in CST Studio Suite[®] to investigate the HOM behavior of PERLE Cavity.
 Potentially dangerous monopole and dipole HOMs were identified and classified until 2.4 GHz. A trapped monopole HOM was found at ~2.25 GHz.
- An analytical formulation to calculate the threshold current for a single dipole HOM for the jth-pass in a multi-pass ERL was developed.
- HOM-damping scheme studies: 4 DQW couplers seem to provide better damping than 2 Hook + 2 Probe couplers configuration both for dipole and monopole HOMs. Computed impedance levels are below the analytically-computed beam-stability limits.
- RF-heating analyses were performed on the HOM couplers. The highest field and temperature were detected on the antenna of the DQW coupler.
- The first mechanical design of the Hook coupler has been made, and it has already been fabricated in additive manufacturing (epoxy + copper coating)

Future studies:

- Experimental tests on Q4 2022 and Q1 2023 of a 1-cell and 5-cell 801.58 MHz copper cavity at JLab to test the fabricated HOM couplers
- Simulate beam stability thresholds for longitudinal and transverse impedance through tracking codes
- RF-heating analyses of HOM coupler antenna for the HOMs, and evaluate if an active cooling of the antenna is required.

I would like to thank for the supervision, support, and collaboration:

- IJCLab: Prof. Achille Stocchi, Walid Kaabi, Patricia Duchesne, Guillaume Olry, Prof. Fabian Zomer, Samuel Roset, Gilles Olivier, Luc Perrot
- JLab: Robert A. Rimmer, Haipeng Wang (special thanks to Haipeng for his support and high-level supervision for numerical simulations), Gunn-Tae Park, Sarah Overstreet, James Henry
- CERN: Frank Gerigk, Shahnam Gorgi Zadeh, Rama Calaga, Sébastien Clement, Simon Barriere, Pierre Maurin, Romain Gerard
- Lancaster University & Cockcroft Institute, Daresbury Laboratory: Sadiq Setiniyaz, Robert Apsimon
- University of Wismar: Kai Papke

• I want to thank also I.FAST (Innovation Fostering in Accelerator Science and Technology) for fully covering my travel expenses.

References

[1] F. Marhauser *et al.*, "Recent results on a multi-cell 802 MHz bulk Nb cavity", presented at the *FCC week 2018*, Amsterdam, Netherlands, 2018.
 [2] H. Wang, F. Marhauser, and R. A. Rimmer, "Simulation and Measurements of a Heavily HOM-Damped Multi-cell SRF Cavity Prototype", in Proc. PAC'07, Albuquerque, NM, USA, Jun. 2007, paper WEPMS070, pp. 2496–2498.

[3] F. Marhauser, R. A. Rimmer, K. Tian, and H. Wang, "Enhanced Method for Cavity Impedance Calculations", in Proc. PAC'09, Vancouver, Canada, May 2009, paper FR5PFP094, pp. 4523–4525.

[4] R. Kazimi et al., "Observation and Mitigation of Multipass BBU in CEBAF", in Proc. EPAC'08, Genoa, Italy, Jun. 2008, paper WEPP087, pp. 2722–2724.

Thank you for your attention!

Laboratoire de Physique des 2 Infinis

Laboratoire de Physique des 2 Infinis Irène Joliot-Curie IJCLab - UMR9012 - Bât. 100 - 15 rue Georges Clémenceau 91405 Orsay cedex

Université de Paris