

## Noise in Intense Electron Bunches

Sergei Nagaitsev

Sep 16, 2021



### **Project description**

- A funded DOE Stewardship 3-year project
  - Funding for hardware and for scientists
  - No funding was provided for students or postdocs
- A collaboration of UChicago, SLAC, Fermilab, RadiaBeam
   Experiments to be performed at FAST (Fermilab)
- DOE Stewardship customers:
  - NP (CEC concepts)

- BES (FELs)

• We are interested in collaborating with CBB



### What is beam noise?

- 1918: W. Schottky described spontaneous current fluctuations from DC electron beams; "Über spontane Stromschwankungen in verschiedenen Elektrizitätsleitern", Ann. Phys. 57 (1918) 541-567
- See also: Shot Noise in Schottky's Vacuum Tube, C. Schönenberger, S. Oberholzer, E.V. Sukhorukov, H. Grabert, <u>https://arxiv.org/abs/cond-mat/0112504</u>







### Schottky noise

• The result by Schottky, based on the assumption that the statistics of electrons passage is Poissonian, reads for the spectral noise density at the frequency *f*,

$$S(f) = 2e \left| I_0 \right|$$

- The Schottky noise expression is purely due to random electron positions but there could be other contributions to current (density) fluctuations in intense beams:
  - Photocathodes: quantum effects, hot spots
  - Instabilities
  - CSR

### Schottky spectrum diagnostics in rings



THE UNIVERSITY OF

CHICAGO

### CHICAGO Is there more than shot noise in beams?

- Yes! There is a lot of evidence that beams can have coherent density clumps in a ~1 GHz freq. range
- Tevatron bunched beam cooling experiments, 1990-1995
- Observed strong coherent lines at each revolution frequency harmonic in Schottky power spectrum.
  - These strong coherent signals prevented bunched cooling;

S. Nagaitsev

- Still unexplained

Bunched Beam Stochastic Cooling in the Fermilab Tevatron Collider

G. Jackson, E. Buchanan, J. Budlong, E. Harms, P. Hurh,
D. McGinnis, R. Pasquinelli, D. Peterson, D. Poll, P. Seifrid Fermi National Accelerator Laboratory\*
P.O. Box 500 MS 341 Batavia, IL 60510



Figure 1: Measured beam spectrum from a vertical proton pickup. Note the large coherent lines at revolution harmonic frequencies at the left, center, and right. The betatron Schottky lines are clearly visible above the noise floor. The center frequency is 4 GHz and the scale is 10 kHz/div.

9/16/2021



### What about >THz frequency?

• There is a lot of evidence for micro-structure in bunched electron beams too!



An example of a OTR image of a beam with strong micro-bunching effect at optical wavelengths (< 1 um)



## **Optical Transition Radiation**

# Routinely used in beam diagnostics for electron bunches <u>Single foil OTR measurement</u>

This method consists of observe the radiation emitted by charges in the transition of a single surface.





C. B. Reid - Measurement of electron beam emittance using optical transition radiation and development of a diffuse screen electron beam monitor, Doctorate thesis, Naval Postgraduate School, Monterey, California.











Far field observation of the horizontal polarization

#### 9/16/2021

R. B. Fiorito and D. W. Rule - Optical transition radiation beam emittance diagnostics, AIP/BIW, vol 319, 21-37.



### Understanding the noise

- Why is it important?
  - Example EIC CEC



- Y. S. Derbenev, "On possibilities of fast cooling of heavy particle beams," *AIP Conference Proceedings*, vol. 253, no. 1, pp. 103–110, 1992, <u>https://aip.scitation.org/doi/pdf/10.1063/1.42152</u>
- V.N. Litvinenko and Y. S. Derbenev, "Coherent electron cooling," Phys. Rev. Lett., vol. 102, https://link.aps.org/doi/10.1103/PhysRevLett.102.114801
- D. Ratner, "Microbunched electron cooling for high-energy hadron beams," Phys. Rev. Lett., vol. 111, <u>https://link.aps.org/doi/10.1103/PhysRevLett.111.084802</u>



### CEC system parameters (example)

| Parameter                | Symbol        | Value | Unit             |
|--------------------------|---------------|-------|------------------|
| Proton energy            | $E_0$         | 275   | GeV              |
| Lorentz factor           | $\gamma$      | 290   |                  |
| Ring circumference       | С             | 3834  | m                |
| Revolution frequency     | $f_0$         | 78.3  | kHz              |
| Protons per bunch        | $N_p$         | 6.9   | 10 <sup>10</sup> |
| Prot. rms moment. spread | $\delta_p$    | 6.8   | 10 <sup>-4</sup> |
| Prot. rms bunch length   | $\sigma_{pz}$ | 6.0   | cm               |
| Electrons per bunch      | $N_e$         | 6.3   | 109              |
| El. rms bunch length     | $\sigma_{ez}$ | 4.0   | mm               |
| El. rms beam size (vert) | $\sigma_{ey}$ | 0.6   | mm               |
| El. rms beam size (hor)  | $\sigma_{ex}$ | 0.6   | mm               |
| Kicker section length    | $L_k$         | 40    | m                |

# Wake field for a proton at the center of the electron beam.



Any electron density clumps at ~ 1um scale will be also amplified!

### CHICAGO

### Our project

We are proposing to carry out a systematic theoretical and experimental study of electron beam noise at micrometer wavelengths at the Fermilab FAST facility. This wavelengthscale is of general interest in accelerator and beam physics as indicated by the community-driven research opportunities survey. The Fermilab FAST facility is well-suited for this research as it can provide electron bunches with charges 0 -3 nC, 1-60 ps long rms and energies 50 - 300 MeV, making it perfectly relevant to future needs of electron-ion colliders as well as injectors for future FELs.

|                           | FAST                  | EIC (100 GeV) | EIC (275 GeV) |
|---------------------------|-----------------------|---------------|---------------|
| Electron beam energy      | 50 - 300  MeV         | 50 MeV        | 137 MeV       |
| Bunch charge              | 0-3  nC               | 1 nC          | 1 nC          |
| Emittance (norm, rms)     | $\sim$ 3 µm (at 1 nC) | 2.8 μm        | 2.8 μm        |
| Bunch length              | 0.3 - 20  mm          | 14 mm         | 7 mm          |
| Drift section (amplifier) | 80 m                  | 100 m         | 100 m         |



### FAST facility



The proposed experimental apparatus will be installed in the 80-m long high-energy beam transport line, between the SRF cryomodule (CM2) and the dipole magnet D600



9/16/2021







- A 16m in 8 x 2m vacuum segments
- B 2.8m
- + Instrumentation Crosses
- + New Instrumentation Cross for ~32m spacing after cryomodule

Planning for 3 experimental stations, ~30 m apart. Ballistic R56 =  $L/\gamma^2$ 



### **TR-based spectrometer**



The proposed schematic of the TR spectrometer. Note that Prism may be replaced with a grating.

### CHICAGO Enhanced TR-based spectrometer



The proposed schematic of the TR spectrometer enhanced by a streak camera to provide the temporal dependence along the bunch. Note that Prism may be replaced with a Grating



### RadiaBeam's contribution

RadiaBeam is lending at no cost a working prototype of their single-shot THz spectrometer to this project



9/16/2021

Single-bunch THz-range spectrometer. Schematics of THz optical spectrometer: Entrance: THz radiation enters pseudo/uncollimated. A, B: motorized alignment mirrors; C, D: OAPs to refocus and recollimate beam; E, G, N: mirrors; F: translation stage for D, E to adjust collimation without affecting beam path; H: internal alignment laser; I: beam-splitter, allows alignment laser to propagate both upstream and downstream; J: mirror to reflect alignment laser back towards J; K: Powell lens to diverge point laser into a laser fan beam; L: lens to collimate laser fan beam to a line of  $\sim 2$ " length; M: removable kinematic base mount for I, K, L; O: diffraction grating (for THz viewing) OR mirror (for alignment); P: wire-grid polarizer. S. Nagaitsev



### RadiaBeam's spectrometer

IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, VOL. 11, NO. 3, MAY 2021

### Optical Spectrometer With a Pulse-to-Pulse Resolution for Terahertz and mm-Wave Signals

Sergey V. Kutsaev<sup>(D)</sup>, *Senior Member, IEEE*, Marcos Ruelas<sup>(D)</sup>, Vladimir Goncharik, Hoson To, and Alex Murokh, *Member, IEEE* 

#### TABLE I Grating Parameters

| Application                           | <u>mm</u> -wave<br>accelerators | THz radiation sources |
|---------------------------------------|---------------------------------|-----------------------|
| Central frequency                     | 120 GHz                         | 1.065 THz             |
| Frequency range                       | 1.6 GHz                         | 500 GHz               |
| Grating period                        | 1.956 mm                        | 282 μm                |
| Incident Angle                        | 25.5°                           | 17.987°               |
| Reflected angle for central frequency | 57.8°                           | 43.619°               |
| Angular width                         | 1.6°                            | 65°                   |
| Blazing angle                         | 41.7°                           | 30.803°               |



### **Project** activities

- 1. Install and commission three measuring stations in the high-energy transport line, ~40 m apart. Each station should be capable of single-shot (at 1 nC) measurements of transition radiation (TR) power spectrum in the range of  $0.5 3 \mu m$  (stretch goal 10  $\mu m$ ) wavelength.
- 2. Measure TR spectra at 3 locations as a function of various bunch parameters: energy, bunch length, bunch charge, and if possible, emittance.
- Develop a detailed theoretical model and corresponding computer simulations of how the density noise level in a beam is translated to TR spectral power.
- 4. Compare the measured and simulated TR power spectra in order to deduce the noise level in a bunch for various conditions.
- Stretch objective: determine how to change the beam density noise level in a predictable manner, for example by changing the laser structure, the bunch compression procedure and the strength of quadrupole focusing. Test the measured and predicted TR spectra.



### Summary

- We are starting an exciting project, funded by the DOE Stewardship office and relevant to both NP and BES.
- We would like to invite CBB faculty, students and postdocs to collaborate with us.
- Potential connections to photocathodes since density structure can originate from hot spots, lasers