

Design of the BESSY VSR Waveguide Damped Cavities & Ancillary Components for the Cold String

Dr. Andranik Tsakanian, on behalf of BESSY VSR Team Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489 Berlin

ICFA Mini Workshop on HOMs in SRF Cavities

1-3 October 2018

Ithaca, USA

- > Introduction to BESSY II storage ring
- > SRF Upgrade BESSY VSR & Highlights
- > SRF Cavity Specific Designs
- HOM Power Levels in SRF Module
- Ancillary Components for the Cold String
- HOM Power Levels in Cold String
- > Outlook

BESSY II Storage Ring

- BESSY II is a 1.7 GeV synchrotron radiation source operating for 20 years in Berlin
- Core wavelength in the range from Terahertz region to hard X rays

BESSY II Parameters						
Lattice	DBA					
Circumference	240 m					
Energy	1.7 GeV					
Current	300 mA					
RF Frequency	500 MHz					
RF Voltage	1.5 MV					
Bunch Length	15 ps					
Emmitance	6 nm rad					

The Concept of BESSY VSR

BESSY II @ present

RMS bunch length (ps)

Limited pulse length in storage ring Machine optics $\sigma \propto$ Hardware (RF cavities)

٠

- At high current beam becomes unstable
- For ps pulses, flux is reduced by nearly 100 ٠

- Supply short pulses down to 1.5 ps (100 × more bunch current)
- Low a permits few 100 fs pulses
- Configure BESSY^{VSR} so 1.5 ps and 15 ps bunches can be supplied simultaneously for maximum flexibility and flux!

BESSY II, SC Upgrade – BESSY VSR

BESSY II, SC Upgrade – BESSY VSR

BESSY VSR Filling Patterns

- High concentration of long bunches populated with high current (flux hungry users)
 - Few high current short bunches

(slicing bunches ...)

More short bunches (Extended)

 \geq

High Population of long & short bunches at the same time

BESSY II SC Upgrade – BESSY VSR

Simultaneous Store of long & short bunches

○ BESSY VSR

> SRF SYSTEM: 2@1.5 GHz & 2@1.75 GHz

CHALLENGES

- > CW operation @ high field levels E=20MV/m
- Peak fields on surface (discharges, quenching)
- High beam current (Ib=300mA),
- Cavity HOMs must be highly damped (CBIs)
- Exotic cavity design (damping end-groups)
- > Integrating in existing storage ring
- > Transparent Parking of SRF Module.

- > Introduction to BESSY II storage ring
- > SRF Upgrade BESSY VSR & Highlights
- SRF Cavity Specific Designs
- HOM Power Levels in SRF Module
- Ancillary Components for the Cold String
- HOM Power Levels in Cold String
- > Outlook

BESSY VSR SRF Cavity Designs

- > Tune fundamental mode: field flatness, R/Q
- Control cavity HOM spectrum (off-resonance condition) during the design. \succ

Strong HOM Damped SRF Cavity Concepts

Cavity with HOM WG Dampers

- 5 x Waveguide dampers, HOM loads (warm)
- Large beampipe radius better HOM propagation
- > Waveguides are below cutoff for fundamental \rightarrow can be moved close to the cavity for heavy damping.

Simulation Results	– for both	Cavity (TN	l ₀₁₀ π-mode)										
	1.5GHz	1.75GHz	Design goal					0		0			
Number of Cells		4						۸	Ā	٨	K		
L _{active}	0.4 m	0.344 m										x → z ↓	
Frequency [GHz]	1.4990	1.7489	3 th & 3.5 th harm.					-				Y	
			of 499.65 MHz		4-0	Cell C	avity	- 1.5	GHz	: (D	esigi	n-FA2)
Q _{ext}	4.99*10 ⁷	4.28*10 ⁷		1			ΞŃ	ΠΛ		17	1		
G [Ω]	277.63	275.42		.N 0.8			- #-\	$\frac{1}{1} = 1$		+	\ {		
E_{pk}/E_{acc}	2.32	2.30	≤ 2.4		– + –	 	- 🖡 _	¦		! +	<u></u>	 _	 +
B _{pk} / E _{acc} [mT / (MV/m)]	4.98	5.13	≤ 5.3	nax	i	i	1	IJ.	U –	U -	1	i	
R/Q [Ω]	386	380	≥ 90 per cell	<u>5</u> 0.4		' 	-1	17	V-	7 -	1-	_'	<u> </u>
Field Flatness - µ _{ff}	97%	99 %	≥ 95%	<mark>ы</mark> 0.2 –	- + -		/ + -		4	¥-			+
				-50	-40	-30	-20	-10 z	0 [cm]	10	20	30 4	40 5

 L_{active}

VSR 1.5GHz Cavity Impedances from Eigenmodes

	Nonopole Band										
	Frequency [GHz]	R/Q [Ω]	Q _{ext}	Mode Type							
1	1.49866	386	5.00·10 ⁷	π							
2	1.49134	0.41	2.98·10 ⁷	2π/3							
3	1.47424	0.09	4.74·10 ⁷	π/2							
4	1.45785	0.05	1.60·10 ⁸	2π							

8

BESSY VSR SRF Cavity Designs

 \geq

compensated by 180 degree rotation of second 1.5GHz Cavity.

Horizontal kick is 10K times smaller than vertical.

Shot Range Wakes

Resonant Mode Extraction from Wakes : Pole-Fitting

	$W(z) = \sum 2 K \cos(\omega_{\nu} z) z^{-\alpha_{\nu}} S$			Prony-Pis	sarenko Fit	Ci	rcuit definition
	Bunch Path -off axis XY=2.1mm $\alpha_{v} = \omega_{v} / (c 2 Q_{var}) \cdot R / Q[\Omega] = \frac{4 K_{v} [V/pC]}{4 K_{v} [V/pC]} 10^{3}$	(Linac)	Ν	Freq. [GHz]	R/Q[Ω]	\mathbf{Q}_{loaded}	0.5 · R/Q · Q _{loaded} [Ω]
[V/pc]	$\omega_{V} = \omega_{V} (\mathbf{c} - \mathbf{c}) $		1	1.499 1.499	386.46 420.44	8.97e+4 1.25e+4	1.73e+7 2.64e+6
/ake Potentia			2	1.649 <mark>1.657</mark>	17.877 <mark>26.45</mark>	4.46e+2 <mark>1.69e+2</mark>	3.99e+3 2.24e+3
mgitudinal M	-2	Original - Prony-Fit - Bunch -	3	2.713 <mark>2.709</mark>	7.05 <mark>7.047</mark>	3.4e+2 <mark>4.61e+2</mark>	1.2e+3 1.62e+3
c] Lc	-5 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 s[m]	18 19 20	4	2.794 2.793	130.0 143.02	1.0e+2 9.85e+1	6.5e+3 7.04e+3
otential [V/p			5	4.326 4.330	7.535 10.65	1.34e+3 5.5e+2	5.05e+3 2.92e+3
dinal Wake F		I Wake Data	6	4.385 <mark>4.384</mark>	21.19 25.39	2.87e+2 <mark>2.65e+2</mark>	3.04e+3 3.36e+3
Lomgitu	$\begin{bmatrix} -3 \\ -4 \\ -4 \\ -4 \\ -4 \\ -4 \\ -4 \\ -4 \\$	18 19 20	7	5.941 <mark>5.944</mark>	3.939 <mark>5.233</mark>	2.76e+2 <mark>2.42e+2</mark>	5.43e+2 <mark>6.32e+2</mark>
	Pole-fitting gives quantitative estimate on the resonances of the sys (Mode type undefined).	tem	8	6.280 6.278	9.88 10.12	2.3e+3 2.32e+3	1.13e+4 1.17e+4
	For the fundamental mode Qext=5e7 should be used, because the we length 20m is too short to extract such high Qext.	vake	9	6.324 <mark>6.339</mark>	3.713 <mark>8.960</mark>	3.79e+2 7.43e+1	7.04e+2 3.33e+2
	The search for best fit is done manually, it depends on frequency rai filter settings in the algorithm.	nge &	10	6.836 <mark>6.863</mark>	3.815 <mark>4.128</mark>	4.04e+2 3.79e+2	7.72e+2 7.82e+210

Resonant Mode Extraction from Wakes : Pole-Fitting

BESSY VSR SRF Cavity Designs

Geometry Parameters for Accelerating Mode & HOM Control

- Rx2/RxC field flatness (not sensitive on other parameters)
- HOM spectrum shift is sensitive on cell-slope (for tuned fundamental)
- > Design:
 - 1. Fix iris radius (Shunt impedance)
 - 2. Ensure field flatness >95% (Rx2/RxC , fixed slope)
 - **3.** Tune fundamental frequency by r2, check B-peak.
 - 4. Check HOM spectrum

Signal Spectral Weighting Technique

HOM Power of Single Cavity – VSR Baseline beam

Spectrally Weighted with "Baseline" pattern 1.75GHz **1.5GHz Cavity Type** HOM Power [W] Port No. 1.50 GHz Cavity $1 - FPC^{(1)}$ 'n 33.8 37.9 1.75 GHz Cavity a. $2 - WG^{(1)}$ 105.3 154.7 $3 - WG^{(1)}$ 151.4 103.8 $4 - WG^{(2)}$ 88.5 108.3 $5 - WG^{(2)}$ 109.8 90.2 $6 - WG^{(2)}$ 111.6 90.6 Wake 7 – BmP^(Upstream) 235.4 200.5 0.2 8 – BmP^(Downstream) 275.9 327.1 Total Coherent 1079 1146 0 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 None-Coherent 1293 1300 Frequency [GHz]

- Both cavities are not hitting any of beam resonances that are multiple of 250MHz (Coherent and none-coherent powers are at the same level).
- > Cornell's ERL cavities are designed to run at about 100-200W HOM Power.

HOM Power of Single Cavity 1.5GHz

Design of the 1.5 GHz BESSY VSR coupler

FPC characteristics for HOMs

Test Model In FPC at higher frequencies (HOMs) the EM \geq **RF Window** waves are mainly reflected back from first RF windows – forms standing wave. True for all coax modes – TEM, TE11 ... > One should include the first half of the FPC in **Excitation Port** wake & Eigenmode simulations – to analyze how this fact reflects on HOM power balance & to avoid possible trapped mode in end-group. S-Parameters [Magnitude in dB] 0 -5 S1(1),1(1) CST TEM-mode, 2.75GHz -10 2 1026 | 880 | 733 | 587 | 440 | -15 -20 -25 Cutplane Name Cutplane Normal: 0.0.1 Cutplane Position -30 Component: rientation Outside 2D Maximum [V/m]: 1591 Frequency: 2.75 -35 1.4 1.6 1.8 2.2 2.8 3.2 3.4 3.6 2 2.4 2.6 3 Frequency / GHz

HOM Powers for 1.5GHz Cavity Full-Model (incl. FPC)

Dielectric losses are included in Wake simulation

Ports	s Model mit FPC Model ohne FPC								
FPC ⁽¹⁾	2.89 🗸	25.86							
WG ⁽¹⁾	93.78 🕇	91.62							
WG ⁽¹⁾	93.78 🛉	91.62							
WG ⁽²⁾	87.35	87.94							
WG ⁽²⁾	87.35	87.94							
WG ⁽²⁾	97.00	98.26							
BmP ⁽¹⁾	213.11 🛉	205.58							
BmP ⁽²⁾	269.97	270.79							
Sum	945.24	959.62							

- With full coupler model the HOM power in FPC is reduces significantly.
- This HOM power is redistributed into the closest ports, i.e. 2 x HOM waveguides of corresponding end-group & beam pipe.

Waveguide Bend Broadband Characteristics

- TE10 mode couples into different modes after bend: TE10, TE11, TM11..., depending on excitation frequency & the cutoff of each WG mode !
- At high frequencies the TE10 is scattered from the bend into several modes, i.e. acts as mode mixer. At optimized 30mm inner bending radius the reflection is minimal in broadband frequency sense.

BESSY VSR HOM Loads

Water-cooled HOM loads (room temperature 300K) Specifications: 460W per load Design, fabrication and tests @ JLab

BESSY-VSR SRF cavities, IPAC'17, MOPVA130

٠

- > Introduction to BESSY II storage ring
- > SRF Upgrade BESSY VSR & Highlights
- > SRF Cavity Specific Designs
- HOM Power Levels in SRF Module
- Ancillary Components for the Cold String
- HOM Power Levels in Cold String
- > Outlook

HOM Power Levels in SRF Module

Wakefield Simulations

- Long Range Wakes~ 20m
- Spectral Weighting of all Port Signals with
 Beam Spectrum
- Expected HOM Power Levels & Spectrum
- Efficiency of HOM Damping
- Analyze different cavity arrangements in the module to reach optimal operation conditions with equally distributed power portions in warm HOM loads.
- Study on different FPC locations (Upstream - Downstream) to minimize the flown HOM powers & redirect to wavguide dampers. (RF window issues)

	VSR Mo	dule Powe	r Levels: B	aseline Filli	ng Patern
	Port	LSSL1	LSSL2	SSLL1	SSLL2
	1	28,9	28,9	102,2	58,6
	2	102,2	102,1	216,0	217,4
	3	102,2	102,1	216,0	217,4
	4	157,0	157,1	178,7	179,0
	5	157,0	157,1	178,7	179,0
	6	195,6	195,5	204,6	231,7
	7	46,3	45,8	25,7	25,4
	8	230,3	230,1	140,2	140,1
	9	230,3	230,1	140,2	140,1
	10	163,2	163,7	165,5	165,9
—	11	163,2	163,7	165,5	165,9
≥	12	221,8	221,3	225,7	223,6
Ĺ.	13	52,6	53,0	53,1	52,4
<u>er</u>	14	249,6	247,2	254,2	251,8
Š	15	249,6	247,2	254,2	251,8
Ĩ	16	185,2	163,9	195,2	171,1
Σ	17	185,2	163,9	195,2	171,1
P	18	240,9	199,9	263,6	207,6
_	19	96,2	24,2	59,7	23,7
	20	201,5	115,1	210,2	116,2
	21	201,5	115,1	210,2	116,2
	22	86,0	159,5	90,0	167,6
	23	86,0	159,5	90,0	167,6
_	24	97,3	202,8	96,5	208,5
ım 🖌	25	246,6	246,1	227,6	225,0
es l	26	269,4	330,2	299,0	357,7
	Total	4245 W	4225 W	4457 W	4432 W

1.75 GHz Cavities

<u>1</u> 5

GHz

<u>1</u>.5 GHz

23

Upstr.

Downstr.

BmP

Total

Technically difficult to achieve due to the limited space in the lowbeta straight of the ring.

- > Introduction to BESSY II storage ring
- > SRF Upgrade BESSY VSR & Highlights
- > SRF Cavity Specific Designs
- HOM Power Levels in SRF Module
- Ancillary Components for the Cold String
- HOM Power Levels in Cold String
- > Outlook

Ancillary Components for the Cold String

• H.-W. Glock et al, Design of the beamline elements in the BESSY VSR cold string, IPAC'18, THPMF033

Collimated Shielded Bellow

 \succ

 \geq

-2 mm	± 0	+ 2mm
415.8 MHZ	422.1 MHz	423.0 MHz
14.3 Ω	15.8 Ω	17.1 Ω

-2 mm	± 0	+ 2mm	-2 mm	± 0	+ 2mm
2125.1 MHz	2154.8 MHz	2135.4 MHz	3976.4 MHz	3928.0 MHz	3784.4 MHz
4.3 Ω	4.2 Ω	4.2 Ω	5.2 Ω	2.2 Ω	2.2 Ω

No issues from stretching / shortening

Not necessarily monotonous dependency

Computation and pictures courtesy of H.-W. Glock

Module End-Bellow

Module end-bellows demands

- > Longitudinal and transversal compensation of cold string and tank tolerances
- > Lateral compensation of exterior cavity's shrinkage
- > Compensation of space requirements during mounting procedure
- > Thermal isolation 300 K \Leftrightarrow 1.8 K; accommodate thermal intercept
- > Least beam interaction, esp. no localized modes @ multiples of 250 MHz

Module End-Bellow

Module-end-bellows draft design

- Layout following mechanical and thermal considerations
- Revealed single localized mode @ 2.023 GHz, R/Q = 1.61
 - Ω, Q ~ 2600, ...
- ... which is considered as dangerously close to 2.00 GHz in view of mechanical softness

29

- Section diameter of second part raised by 5% (final design subject of production limits)
- Intermediate short straight to accommodate thermal intercept
- Position of intermediate straight adjusted by active tuner within ± 3 mm

Computation and pictures courtesy of H.-W. Glock

HOM powers in beampipe absorber

- HOM power dissipation is strongly concentrated close to surface.
- With contingency we expect ~ 2 kW per absorber.

HOM power losses in dielectric absorber

$$p_{n} = \iiint_{\mathbf{\Omega}_{abs}} \frac{1}{2} \omega_{n} \varepsilon''(\omega_{n}) \left| \underline{\mathbf{E}}_{n}(\mathbf{r}) \right|^{2} dV$$
$$= \pi \int_{y_{\min}}^{y_{\max}} \int_{z_{\min}}^{z_{\max}} r \, \omega_{n} \, \varepsilon''(\omega_{n}) \left| \underline{\mathbf{E}}_{n}(\mathbf{r}) \right|^{2} \, dy dz$$

Approximaton for Spectral- & spatial-distributed dielectric wake loss for periodic beams.

Computation and pictures courtesy of T. Flisgen

- T. Flisgen et al, Estimation of Dielectric Losses in Beam Pipe Absorbers, IPAC'18, THPAF084
- H.-W. Glock et al, Design of the beamline elements in the BESSY VSR cold string, IPAC'18, THPMF033

Beampipe Absorber

	σ/mm	f _{max} / GHz	N _{mesh}	T _{comp}		Total absorbed HOM powers for BESSY VSR filling patterns		rs for	
Model 1	14	7.3136	426,809,958	2 d 20 h 12 min				S Dowoz Diabó	
Model 2	10	10.2391	1,075,099,752	7 d 3 h 11 min		Filling Pattern	Absorber	Absorber	
112 2D port modes						baseline	801 W	1371 W	
 320 field probes for E_x, E_y, E_z per beampipe absorber Transverse offset of the bunch XY = 2.1 mm 					extended	716 W	1250 W		
Computation and pictures courtesy of T. Flisgen					_	osses are in the expecte on the considered freque osses in in the right abso he left absorber.	ed order, but de ency range. orber are ~ 1.7 h	epend heavily higher than in	

Eigenmodes in Big Structures: SSC Technique

Eigenmodes in rather big structures: State-Space-Computation (SSC)

Computation and pictures courtesy J. Heller, U. van Rienen, University Rostock

decompose complex structure into smaller components; provide coupling in terms of waveguide mode interactions full-module eigenmode atlas up to 3.6 GHz computed

Example: Mode index 1221, f = 3.2877 GHz, R/Q = 3.86 Ω

Universität

Rostock

(6) Carity A. =1.75-GHz

(12) Valve Down

(8) Cavity f₂ = 1.75 GHz

(11) Bellow 5

(13) Warm Taper Down

(7) Bellew 3

(34) Carity

mit Schligt

Eigenmodes in Big Structures: SSC Technique

HOM Power Distribution in Cold String

- The HOM power at FPC end-groups of 1.5GHz cavities located at both ends of the module are significantly increased due to the warm components – outside of the module.
- The power levels & balance inside the module is unperturbed.
- The beam pipe absorber losses are underestimated, because of sparse fieldprobe sampling in dielectric. More accurate simulations are foreseen & 1-2kW power dissipation in two absorbers is expected (see ref.).

A. Tsakanian et al, HOM power levels in the BESSY VSR cold string, IPAC'18, WEPML048
T. Flisgen et al, Estimation of Dielectric Losses in Beam Pipe Absorbers, IPAC'18, THPAF084

		HOM Power [W]						
Compon	Deut	Baseline	Extended	Single				
ent	Port	300mA	300mA	30mA				
N	FPC ⁽¹⁾	6 2	57	30				
E E	WG ⁽¹⁾	197	170	139				
eal	WG ⁽¹⁾	197	170	139				
bsti	WG ⁽²⁾	166	145	133				
	WG ⁽²⁾	166	145	133				
Ö	WG ⁽²⁾	202	180	137				
72	FPC ⁽¹⁾	66	62	40				
σε	WG ⁽¹⁾	255	231	148				
75	WG ⁽¹⁾	255	231	148				
y 1 psti	WG ⁽²⁾	183	168	134				
i și	WG ⁽²⁾	183	168	134				
<u> </u>	WG ⁽²⁾	206	192	134				
Τz	FPC ⁽¹⁾	69	67	50				
	WG ⁽¹⁾	258	228	180				
	WG ⁽¹⁾	258	228	180				
v 1 vus	WG ⁽²⁾	249	229	123				
Do	WG ⁽²⁾	249	229	123				
Ű	WG ⁽²⁾	284	260	125				
2	FPC ⁽¹⁾	1 33	31	26				
1 5 5	WG ⁽¹⁾	151	126	134				
L.5 stre	WG ⁽¹⁾	151	126	134				
	WG ⁽²⁾	140	124	106				
Do	WG ⁽²⁾	140	124	106				
0	WG ⁽²⁾	176	156	110				
BmP	Upstr.	54	47	16				
DITIF	Downstr.	143	126	46				
Pump.	Upstr.	20	18	7				
Dome	Downstr.	17	15	8				
BmP	Upstr.	273	241	185				
Absorber	Downstr.	367	320	247				
To	tal	5170	4611	3357				

- Beampipe-absorbers for more HOM damping, especially excited by interaction with warm components.
- Synchrotron light collimating bellow is required at module center.
- Every component is optimized to fulfil off-resonance condition with respect to circulating beam.

Thank You for Your Attention !