

HOM damping requirements for high-current option of FCCee

Ivan Karpov, Rama Calaga, Elena Shaposhnikova

Acknowledgments: O. Brunner, A. Butterworth, J. F. Esteban Müller, R. Rimmer, N. Schwerg, D. Teytelman

ICFA Mini Workshop on Higher Order Modes in Superconducting Cavities, 01.10.2018

FCC-ee collider parameters

Parameters:

 $f_{\rm rf}$ = 400 MHz, *h* = 130680, *C* = 97.75 km

 4 energies defined by experimental program

Machine	Ζ	W	Ζ	tī
Energy (GeV)	45.6	80	120	182.5

- 50 MW power loss per beam due to synchrotron radiation
- Low-energy Z machine
 - \rightarrow highest current (\approx 1.4 A)
 - → most challenging for high-order mode (HOM) power extraction (max power 1 kW per HOM coupler)

HOM power loss calculations

Normalized Fourier harmonics Longitudinal rf cavity of beam current impedance $P = J_A^2 \sum_{k=-\infty}^{\infty} |\hat{J}_k|^2 \operatorname{Re}[Z_{||}(kf_0)]$

 J_A – average beam current

- f_0 revolution frequency
- k revolution harmonic number

Estimations of the power loss are required to determine parameters for HOM absorbers.

Beam spectrum for different filling schemes

Spectrum is dominated by: $1/t_{bb}$ lines (always present) + $1/t_{tt}$ lines (depending on number of trains)

Beam spectrum for different filling schemes

Spectrum is dominated by: $1/t_{bb}$ lines (always present) + $1/t_{tt}$ lines (depending on number of trains)

rf system for FCC-ee Z machine

13 cryomodules with four 400 MHz single-cell LHC-like cavities

Single-cell cavity impedance

→ Only one mode below cut-off frequency with parameters: $f_r \approx 694$ MHz, $R/Q \approx 12 \Omega$ (CST EMS simulations), quality factor Q = ? 7

Impedance of full structure

 \rightarrow There are four modes with high (R/Q) below cut-off frequency of the beam pipe between cavities.

 \rightarrow Higher frequency HOMs have small (R/Q) values

Power loss above cut-off frequency

Constant parameters: total current \leq 1.4 A, abort gap 2 µs, bunch population 1.7e11 **Variable parameters:** number of bunches in the train, number of trains, train spacing

Power loss is moderate for the present cavity design for bunches in collisions There is a weak dependence on train spacing and bunch spacing

Power loss for HOM below cut-off frequency

Power losses of few 100 W are for small Q + "resonant" cases with high Q \rightarrow Damping of the mode for longitudinal stability should be moderate \rightarrow Resonant cases should be identified 10

Shift of the resonant frequency

Resonant case when beam spectral line overlaps with HOM* $\left|1 - \frac{[f_r t_{tt}]}{f_r t_{tt}}\right| < \frac{1}{o}$

- \rightarrow There are many resonant cases
- \rightarrow Not all of them are dangerous

*I.Karpov et al., Phys. Rev. Accel. Beams 21, 071001 (2018)

Power losses for different filling schemes

Overlap with spectral lines defined by bunch spacing

 \rightarrow Some train spacings should be avoided in operation

 \rightarrow Strong power losses for 10 ns and 17.5 ns bunch spacings

More "general" case

 \rightarrow Operation settings define recommendations for the cavity design (position of HOMs)

Summary

- Power losses in FCCee single-cell rf cavities were evaluated
- Contribution from continuous impedance spectrum is around 3 kW for bunches in collisions.
- Below cutoff frequency there is one HOM with high R/Q (it can split into 4 modes for the full structure) which can significantly contribute to power losses
- Critical filling schemes were identified and should be avoided in operation for the given cavity design:
 - 10 ns and 17.5 ns bunch spacings are not feasible
 - Other bunch spacings can be used with particular filling schemes (distance between trains > 100 rf buckets)
- HOM frequency ranges for new cavity designs which are "safe" for given bunch spacings were identified

Thank you for your attention!

Contribution of tapers

Frequency range of transition from $Z_{step}/2$ to Z_{step} is defined by taper geometry

Optimal taper length*

If distance between tapers >> $d^2/c\sigma$, contributions of taper-in and taperout are compensated for $L > L_{opt} = (d - b)^2/c\sigma$

*S. A. Heifets and S. A. Kheifets, Rev. Mod. Phys. 63, 631 (1991)