O. Napoly LC02, SLAC, Feb. 5, 2002

Higher Order Modes Measurements with Beam at the TTF Linac

TTF Measurements

A collective effort including most of Saclay, Orsay and DESY TTF physicists :
S. Fartoukh, G. Devanz, C. Magne, M. Jablonka, H.W. Glock, N. Baboi, M. Huening, G. Kreps, M. Liepe, S. Schreiber, H. Weise, M. Wendt

- 1) TTF Modules : HOMs below cut-off
- 2) Resonant Excitation : Experimental Methods
- 3) Results and Analysis for Dipole Passbands
- 4) Interpretation for the 3rd Dipole Passband

TTF: Superconducting Modules

Five 8-cavity modules assembled, three modules tested in TTF linac

TTF: The 3 Measured Modules

Module 1								
Cavity	D3	S8	* S10	D1	D2	* S11	D4	S7
Power coupler	FNAL	DESY	DESY	FNAL	FNAL	DESY	FNAL	FNAL
HOM couplers	DESY	Saclay	Saclay	DESY	DESY	Saclay	DESY	Saclay
Module 2								
Cavity	C22	C21	C25	C23	* A15	C26	C27	C24
Power coupler	FNAL	FNAL	FNAL	FNAL	FNAL	FNAL	FNAL	FNAL
HOM couplers	Saclay	Saclay	Saclay	Saclay	DESY	Saclay	Saclay	Saclay
Module 3								
Cavity	D41	S32	S29	S30	D39	D40	* S28	D42
Power coupler	DESY	DESY	DESY	DESY	AC	AC	DESY	AC
HOM couplers	DESY	DESY	DESY	DESY	DESY	DESY	DESY	DESY

* Cavities with high-*Q*, 2.585 MHz mode

Monopole HOMs

- Monopole HOMs (*m*=0, TM0xx) have a major impact on power dissipation in the HOM coupler (~ 30 W/ module)
- They have a negligible influence on longitudinal dynamics :

 → HOM induced multi-bunch energy spread ≈ 2×10⁻⁶, smaller than the spread induced by RF-stabilisation

• Transverse effect through tilted cavities not yet taken into account.

The Dipole Passbands

Frequency [GHz]

Emittance Growths : the TDR Situation

With the list of HOMs from the TDR, both the single bunch and the multi bunch emittance growths are small:

$$\delta \varepsilon_y / \varepsilon_y < 4\%$$

Assumptions :

- 1 MHz frequency spread
- 0.5 mm RMS cavity misalignments
- 1st bunch steered through all quadrupole centres

Emittance Growths : 2.590 MHz mode

TM011 : HOM Frequency Spread

TE111 : HOM Frequency Spread

TM110 : HOM Frequency Spread

Resonant Excitation : Experimental Methods

Resonance HOM / **Beam** by :

1. Cavity detuning : f_{HOM} shifted to mf_{Beam} harmonics $\Rightarrow f_{Beam} < tuning range \approx 1 \text{ MHz}$

2. Beam charge modulation $f_{\text{mod}} \rightarrow$ tuneable side-bands $f_{\text{HOM}} = m f_{\text{Beam}} \pm f_{\text{mod}}$ \Rightarrow Brilloin zone [0, f_{Beam}] as large as possible

> Dipole HOM excitation:

TTF dogleg magnet operates only in x-plane : $\delta x = \pm 2 \text{ cm}$ monopole $\mathbf{m} = 0$: $P_{\text{HOM}} \propto \delta x^0$, $\delta x_{\text{BPM}} = 0$ dipole $\mathbf{m} = 1$: $P_{\text{HOM}} \propto \delta x^2$, $\delta x_{\text{BPM}} \propto \delta x$ quadrupole $\mathbf{m} = 2$: $P_{\text{HOM}} \propto \delta x^4$, $\delta x_{\text{BPM}} \propto \delta x^3$

High-*Q* HOM in the 3rd Passband

HOM : f = 2.585 GHz , $Q = 10^6$ measured with 216 MHz Injector #1 in Module 1, in 1998.

BPM Signal

High-*Q* HOM in the 3rd Passband

Frequency f_{HOM} , damping Q and "m=1" are easily measured. Coupling R/Q is not: requires beam parameters and polarisation

frequency domain

time domain

High-*Q* HOM in the 3rd Passband

HOM : f = 2.585 GHz , $Q = 4 \times 10^5$ measured with 1 MHz Injector #2 in Module 2, in 1999.

Results and Analysis for the Dipole Passbands

The 3rd Dipole Passband :

The 2585 MHz identified as the highest frequency HOM within the 3rd dipole passband : NOT A SURPRISE !

 2π mode at ~ 2×1.3 GHz, synchronous with e⁻ beam $\Rightarrow R/Q = 24 \Omega/cm^2$, the highest dipole coupling.

QUESTIONS : why the bad damping , $Q > 10^5$?why only in 2 out of 8 cavities ?

Goal : Prove or dis-prove the existence of long-lived HOMs, particularly in the 5th dipole passband.

Three Methods : (*f* and *Q* measured with beam)

- 1. Measure R/Q from beam excitation in the BPM : no way, most BPM signals are triggered by quadrupole modes !
- 2. Identify the position of measured modes in the passband : very difficult, because the measured passband is a forest !
- 3. Measure R/Q from beam excitation in the HOM couplers : main unknowns are the polarisations Ki / HOM / *x*-plane

The 5th dipole passband : module measure-A

ments are difficult to interpret

Benchmarking with TM110-8 @ 1887 MHz

HOM power [dBm]

Fri Oct 26 13:07:36 2001

The loaded cavity signal (a) 54 MHz

TM110-5 vs. TM110-8

PHASE DIAGRAM AT BPM

TM110-5 @ 1874 MHz $R/Q = 8.7 \ \Omega/cm^2,$ $Q = 1.14 \times 10^5$ $\Rightarrow \Delta x_{BPM} = 1.75 \text{ mm}$

TM110-8 @ 1887 MHz $R/Q = 0.16 \ \Omega/cm^2$, $Q = 3.85 \times 10^5$

 $\Rightarrow \Delta x_{\rm BPM} = 0.085 \, \rm mm$

TM110-5 @ 1887 MHz

Fri Oct 26 15:41:15 2001

5th Dipole Passband Trapped Mode

Prediction for : f = 3068 MHz , $R/Q = 1.1 \Omega/cm^2$, $Q = 3.4 10^7$ in cavity C7, as a function of the modulation frequency

Conclusions for Higher Passbands

- ➤ No signal (~ 0 dBm = 1 mW) of strong HOM with low damping ($R/Q \ge 1 \Omega/cm^2, Q \ge 10^6$)
- But, no decisive proof that such modes do not exist.
 Possible explanations for low power signal :
 (~40 dBm instead of ~0 dBm):
 - R/Q Υ 1 $\Omega/cm^2 \Rightarrow$ HOM is harmless
 - Vertical polarisation
 - Signal is off resonance : $|f_{Q1} f_{D5}| > 100 \text{ kHz}$
 - Last bunch generates low field across gap

Necessary Improvements

- Improve BPM resolution (complement with strip-line)
- Offset beam horizontally and vertically
- Check linearity for dipole modes
- > Measure direct pick-up signal of HOM couplers
 - dependence on offset
 - dependence on coupler
 - dependence on modulation frequency
- Measure HOM power for well understood monopole modes, and compare to prediction
- ➢ Vary number of bunches by one unit.

 \Rightarrow A complete frequency scan will be very long

Interpretation of the 3rd Dipole Passband Puzzle

- A recent *(preliminary)* calculation by M. Dohlus (DESY) might elucidate the problem of the 3rd dipole passband.
- It combines S-parameter and MAFIA type of calculations, a method also developed at the U^{ty} of Rostock.
- It is based on the real geometry of Input and HOM couplers.

> It predicts the correct passband pattern and HOM damping

phi/deg --->

- \succ It predicts:
 - the correct pairing of polarisations,
 - with high and low HOM damping
 - the correct shape of s12 through HOM couplers K1-K2

It predicts "module modes" extending over the entire module, in the case of homogeneous HOM coupler type.

> It predicts a practical solution for reducing $Q < 10^5$

> Polarisation pattern may not be completely understood

Example of S28 cavity (module 3) with DESY HOM couplers showing a vertically polarized HOM at 2590.6 MHz with $Q = 6.5 \ 10^5$:

- vertical polarisation \rightarrow DESY coupler
- $f(\log Q) < f(\operatorname{high} Q) \rightarrow \operatorname{Saclay coupler}$

Conclusions

LESSONS

- ► HOM above cut-off may not be contained in a single cavity :
- \rightarrow single cavity R/Q is not relevant, because field pattern is changed
- \rightarrow module R/Q not useful for (m=1) modes because orbit not constant.
- > Although used for *f* and *Q*, beam measurements MUST be used for measuring beam coupling R/Q and polarisation Φ .
- \rightarrow requires qualitative improvement in experimental set-up.

CONCLUSIONS

> The puzzle of 3^{rd} dipole passband might be explained and cured.

➤No evidence for dangerous HOM in the other passbands although high-Q modes exists, especially in the 5th passband