O. Napoly LC02, SLAC, Feb. 5, 2002

Higher Order Modes Measurements with Beam at the TTF Linac

TTF Measurements

- A collective effort including most of Saclay, Orsay and DESY TTF physicists:
 - S. Fartoukh, G. Devanz, C. Magne, M. Jablonka,
 - H.W. Glock, N. Baboi, M. Huening, G. Kreps, M. Liepe,
 - S. Schreiber, H. Weise, M. Wendt
 - 1) TTF Modules: HOMs below cut-off
 - 2) Resonant Excitation: Experimental Methods
- 3) Results and Analysis for Dipole Passbands
- 4) Interpretation for the 3rd Dipole Passband

TTF: Superconducting Modules

Five 8-cavity modules assembled, three modules tested in TTF linac

TTF: The 3 Measured Modules

Module 1								
Cavity	D3	S8	* S10	D1	D2	* S11	D4	S7
Power coupler	FNAL	DESY	DESY	FNAL	FNAL	DESY	FNAL	FNAL
HOM couplers	DESY	Saclay	Saclay	DESY	DESY	Saclay	DESY	Saclay
Module 2								
Cavity	C22	C21	C25	C23	* A15	C26	C27	C24
Power coupler	FNAL	FNAL	FNAL	FNAL	FNAL	FNAL	FNAL	FNAL
HOM couplers	Saclay	Saclay	Saclay	Saclay	DESY	Saclay	Saclay	Saclay
Module 3								
Cavity	D41	S32	S29	S30	D39	D40	≭ S28	D42
Power coupler	DESY	DESY	DESY	DESY	AC	AC	DESY	AC
HOM couplers	DESY	DESY	DESY	DESY	DESY	DESY	DESY	DESY

^{*} Cavities with high-Q, 2.585 MHz mode

Monopole HOMs

- Monopole HOMs (m=0, TM0xx) have a major impact on power dissipation in the HOM coupler (~ 30 W/ module)
- They have a negligible influence on longitudinal dynamics :
 - \rightarrow HOM induced multi-bunch energy spread $\approx 2 \times 10^{-6}$, smaller than the spread induced by RF-stabilisation

• Transverse effect through tilted cavities not yet taken into account.

The Dipole Passbands

The TDR Model

		· · · · · · · · · · · · · · · · · · ·						
$\omega_l/2\pi$ [GHz]	$(R/Q)_l [\Omega/\text{cm}^2]$	${m Q}_l$						
(measurement)	(simulation)	(measurement)						
1 st dipole passband								
1.6506	0.76	7.0·10 ⁴						
1.6991	11.21	5.0·10 ⁴						
1.7252	15.51	2.0·10 ⁴						
1.7545	2.16	2.0·10 ⁴						
1.7831	1.75	7.5·10 ³						
2 nd dipole passband								
1.7949	0.77	1.0·10 ⁴						
1.8342	0.46	5.0·10 ⁴						
1.8509	0.39	2.5·10 ⁴						
1.8643	6.54	5.0·10 ⁴						
1.8731	8.69	7.0·10 ⁴						
1.8795	1.72	1.0·10 ⁵						
3 rd dipole passband								
(measured since 1998 HOM experiments)								
2.5630	1.05	1.0·10 ⁵						
2.5704	0.50	1.0·10 ⁵						
2.5751	23.80	5.0·10 ⁴						

Emittance Growths: the TDR Situation

With the list of HOMs from the TDR, both the single bunch and the multi bunch emittance growths are small:

$$\delta \epsilon_{y}/\epsilon_{y} < 4\%$$

Assumptions:

- 1 MHz frequency spread
- 0.5 mm RMS cavity misalignments
- 1st bunch steered through all quadrupole centres

Emittance Growths: 2.590 MHz mode

3rd passband 2.590 GHz HOM 14

(R/Q = 23.5
$$\Omega$$
 /cm² , Q = 10⁶ ,
One mode / 8 cavities)

⇒ Multi-bunch emittance

$$\varepsilon_{\text{MB}} = 0.018 \text{ mm·mrd}$$
(on 50 seed average)

⇒ Single-bunch emittance

$$\frac{\delta \epsilon_{SB}}{\epsilon_{SB}}/\epsilon_0 = 7 \%$$
 (only one seed)

Multi bunch emittance [µm]

TM011: HOM Frequency Spread

TE111: HOM Frequency Spread

TM110: HOM Frequency Spread

Resonant Excitation: Experimental Methods

- **Resonance HOM / Beam** by :
 - 1. Cavity detuning: f_{HOM} shifted to mf_{Beam} harmonics
 - $\Rightarrow f_{\text{Beam}} < \text{tuning range} \approx 1 \text{ MHz}$
 - 2. Beam charge modulation $f_{\text{mod}} \rightarrow \text{tuneable side-bands}$

$$f_{\text{HOM}} = m f_{\text{Beam}} \pm f_{\text{mod}}$$

 \Rightarrow Brilloin zone [0, f_{Beam}] as large as possible

Dipole HOM excitation:

Wake Potentials:

$$\frac{\mathbf{W}_{\square}}{\mathbf{v}_{0}} \propto R/Q \times r_{0}^{\mathbf{m}} r_{1}^{\mathbf{m}} \times \cos \mathbf{m}(\theta_{0} - \theta_{HOM}) \rightarrow HOM \text{ Pick}$$
Up

TTF dogleg magnet operates only in x-plane : $\delta x = \pm 2$ cm

monopole
$$\mathbf{m} = 0 : P_{\text{HOM}} \propto \delta x^0, \, \delta x_{\text{BPM}} = 0$$

dipole $\mathbf{m} = 1 : P_{\text{HOM}} \propto \delta x^2, \, \delta x_{\text{BPM}} \propto \delta x$
quadrupole $\mathbf{m} = 2 : P_{\text{HOM}} \propto \delta x^4, \, \delta x_{\text{BPM}} \propto \delta x^3$

High-Q HOM in the 3rd Passband

HOM: f = 2.585 GHz, $Q = 10^6$

measured with 216 MHz Injector #1 in Module 1, in 1998.

BPM Signal

On resonance

216 MHz beam with 15 MHz modulation

125 μs beating due to 8 kHz off resonance

High-Q HOM in the 3rd Passband

Frequency $f_{HOM,}$, damping Q and "m=1" are easily measured. Coupling R/Q is not: requires beam parameters and polarisation

HOM Pickup Signal

HOM at 2.585 GHz

Beam at 2.6 GHz

frequency domain

Decay time $\Rightarrow Q = 10^6$

time domain

High-Q HOM in the 3rd Passband

HOM: f = 2.585 GHz, $Q = 4 \times 10^5$ measured with 1 MHz Injector #2 in Module 2, in 1999.

Results and Analysis for the Dipole Passbands

➤ The 3rd Dipole Passband :

The 2585 MHz identified as the highest frequency HOM within the 3rd dipole passband: NOT A SURPRISE!

 2π mode at ~ 2×1.3 GHz, synchronous with e⁻ beam \Rightarrow R/Q = 24 Ω /cm², the highest dipole coupling.

QUESTIONS: why the bad damping, $Q > 10^5$? why only in 2 out of 8 cavities?

➤ Higher Order Dipole Passband

Goal: Prove or dis-prove the existence of long-lived HOMs, particularly in the 5th dipole passband.

Three Methods: (f and Q measured with beam)

- 1. Measure R/Q from beam excitation in the BPM: no way, most BPM signals are triggered by quadrupole modes!
- 2. Identify the position of measured modes in the passband : very difficult, because the measured passband is a forest!
- 3. Measure R/Q from beam excitation in the HOM couplers : main unknowns are the polarisations Ki / HOM / x-plane

➤ Powerful Quadrupole HOMs are co-excited

Modulation Frequency: 19.290 MHz

The 5th dipole passband: module measurements are difficult to interpret

Benchmarking with TM110-8 @ 1887 MHz

The modes TM110-8 in (C1-C6,C8) are spread with mode in C7 about 3 MHz below by about 300 kHz,

Off resonance cavity response

The loaded cavity signal (a) 54 MHz $P_n = U_n^2 / (R/Q \times Q)$

The exponential decay of the empty cavity depends on number of bunches N $P = P_N \exp(-2t/\tau)$

 \Rightarrow The start of the decay can be a bit higher or much lower than the video signal

TM110-5 vs. TM110-8

PHASE DIAGRAM AT BPM

TM110-5 @ 1874 MHz $R/Q = 8.7 \Omega/\text{cm}^2,$ $Q = 1.14 \times 10^5$

 $\Rightarrow \Delta x_{\text{BPM}} = 1.75 \text{ mm}$

TM110-8 @ 1887 MHz $R/Q = 0.16 \Omega/\text{cm}^{2},$ $Q = 3.85 \times 10^{5}$ $\Rightarrow \Delta x_{\text{BPM}} = 0.085 \text{ mm}$

TM110-5 @ 1887 MHz

5th Dipole Passband Trapped Mode

Prediction for : f = 3068 MHz, $R/Q = 1.1 \Omega/cm^2$, $Q = 3.4 10^7$ in cavity C7, as a function of the modulation frequency

Conclusions for Higher Passbands

- No signal (~ 0 dBm = 1 mW) of strong HOM with low damping (R/Q ≥ 1 Ω /cm², Q ≥ 10⁶)
- ▶ But, no decisive proof that such modes do not exist.
 Possible explanations for low power signal:
 (~40 dBm instead of ~0 dBm):
 - R/Q Υ 1 $\Omega/\text{cm}^2 \Rightarrow \text{HOM}$ is harmless
 - Vertical polarisation
 - Signal is off resonance : $|f_{Q1} f_{D5}| > 100 \text{ kHz}$
 - Last bunch generates low field across gap

Necessary Improvements

- > Improve BPM resolution (complement with strip-line)
- > Offset beam horizontally and vertically
- > Check linearity for dipole modes
- ➤ Measure direct pick-up signal of HOM couplers
 - dependence on offset
 - dependence on coupler
 - dependence on modulation frequency
- ➤ Measure HOM power for well understood monopole modes, and compare to prediction
- > Vary number of bunches by one unit.
 - ⇒ A complete frequency scan will be very long

Interpretation of the 3rd Dipole Passband Puzzle

A recent *(preliminary)* calculation by M. Dohlus (DESY) might elucidate the problem of the 3rd dipole passband.

It combines S-parameter and MAFIA type of calculations, a method also developed at the U^{ty} of Rostock.

It is based on the real geometry of Input and HOM couplers.

> It predicts the correct passband pattern and HOM damping

> It predicts:

- the correct pairing of polarisations, with high and low HOM damping
- the correct shape of s12 through HOM couplers K1-K2

➤ It predicts "module modes" extending over the entire module, in the case of homogeneous HOM coupler type.

 \triangleright It predicts a practical solution for reducing $Q < 10^5$

> Polarisation pattern may not be completely understood

Example of S28 cavity (module 3) with DESY HOM couplers showing a vertically polarized HOM at 2590.6 MHz with $Q = 6.5 \cdot 10^5$:

- vertical polarisation \rightarrow DESY coupler
- $f(\text{low }Q) < f(\text{high }Q) \rightarrow \text{Saclay coupler}$

Conclusions

LESSONS

- > HOM above cut-off may not be contained in a single cavity:
- \rightarrow single cavity R/Q is not relevant, because field pattern is changed
- \rightarrow module R/Q not useful for (m=1) modes because orbit not constant.
- \triangleright Although used for f and Q, beam measurements MUST be used for measuring beam coupling R/Q and polarisation Φ .
- → requires qualitative improvement in experimental set-up.

CONCLUSIONS

- The puzzle of 3rd dipole passband might be explained and cured.
- ➤ No evidence for dangerous HOM in the other passbands although high-Q modes exists, especially in the 5th passband