Physical Vapor Deposition of Bronze-Route Nb₃Sn for SRF Cavities

<u>Wenura K. Withanage</u>¹, Andre Juliao¹, Shreyas Balachandran¹, Christopher Reis¹, Shengzhi Zhang¹, Wan Kyu Park¹, Yi-Feng Su¹, John Buttles², Choong-Un Kim³, Peter J. Lee¹, Lance D. Cooley¹

> ¹ Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University

> > ² Bailey Tool & Manufacturing, Lancaster, TX

³ Materials Science & Engineering Department, University of Texas – Arlington, Arlington, TX

Why investigate bronze routes?

- Move reaction window from ~1100°C to ~700°C
 - Avoid the Nb₆Sn₅ and NbSn₂ phases by exploiting ternary Cu-Sn-Nb system
- Make the reaction compatible with cavity bodies made from copper; avoid bulk niobium (and)
 - Possible cost and formability advantages
 - Potential direct application with conduction cooling
 - Genesis of ideas traces back to founding of IARC at Fermilab
- Avoid Sn vapor, chlorides of Sn and Nb polishing chemistry (corrosive, toxicity).
- Tap into wealth of processing knowledge from composite wires.
- If desired, can push grain size to < 50 nm; very low roughness.

Cu-Sn-Nb pathways for SRF

- Apply Nb to bronze and convert entirely to Nb₃Sn
 - Also works for bronzed copper \rightarrow utilize Cu cavities
 - More complicated geometries are possible, e.g. with diffusion barriers
- Apply bronze to Nb and react to form Nb₃Sn, then remove bronze post-process
 - Utilize Nb/Cu bimetal, e.g. hydroformed
 Nb/Cu cavities
 - Use Nb cavities

"Bronze" need not be bulk bronze (although bulk bronze is an easy starting point for studies) and can be bronzed Cu

First studies: Nb on α -bronze

- Substrates: Mechanically polished zero phosphorous Cu-15%wt Sn and Cu-15%wt Sn- 0.3%wt Ti bronzes.
 - Commercial Cu and bronze usually has P as a deoxidizing agent. Ti was explored here as a getter.
- Substrates were cold-rolled and homogenized at 525°C prior to polishing.
- Nb film deposition conditions.
 - Background pressure ~5E-9 Torr
 - Processing gas 8 mTorr Ar
 - Deposition rate 22.4 nm per minute
 - Niobium film T_c 9.2 K, ΔT_c 0.1 K
- Both process routes took place in the deposition chamber; no vacuum break or exposure to ambient

Nb deposited on hot bronze achieves 10x faster reaction

14-16 K T_c transition consistent with CTE mismatch between Nb₃Sn and bronze. Also seen by CERN for direct deposition of Nb₃Sn on copper

Nb on bronze + post-reaction behaves like processes in wires

Similar effect of CTE mismatch between Nb₃Sn and bronze as for route 1

Columnar grain structure produced by route 1 was never observed in bronze route

- Columnar grains through entire thickness
- Pipeline diffusion at bronze
 GBs → larger Nb₃Sn grains
- Bronze twin boundaries are evident beneath Nb₃Sn
- Very low roughness $R_{\rm A} \sim 7-10$ nm in 100 μ m².
- Sn content of Nb₃Sn layer is measured (EDX) at 25% or higher in both substrates.

Post-deposition reaction produces structures like those seen in wires

- Tendency toward high-angle equiaxed grains
- Evidence for pipeline diffusion along Ti alloyed bronze GBs, with enriched Sn and Ti.
- Very low roughness $R_{\Delta} \sim 10 15$ nm in 100 μ m².
- Sn content of Nb₃Sn layer
- 22–23.5 % no Ti
- 24.5–25.5 % with Ti
- Large Ti₆Sn₅ grains in films on Ti alloyed bronze.

U.S. DEPARTMENT OF

Discussion and summary

- Address the CTE mismatch issues, e.g. by engineering the copper
 - But 15 K is already sufficient to use conduction cooling for low R_{BCS}
- The hot bronze method may be better
 - Full tin content in Nb_3Sn
- What is the significance of the unique grain structure obtained by deposition of Nb onto hot bronze?
 - − Hot bronze in vacuum has a tin-rich surface
 → high tin activity. Can this be exploited further?
 - Can Nb deposition properties give microstructure control?
 - \rightarrow HIPIMS and biasing schemes are available and not yet fully exploited

Discussion and summary

- While roughness is extremely low inside the underlying bronze grains, twin boundaries and grain boundaries affect the Nb₃Sn coating. Is it important to suppress twins and GB effects?
 - Alloying with Ti and other elements increases stacking fault energy, reduces twinning
- What is the significance of the very low roughness? Does this trade off with very high GB density?
- RF measurements are needed.
- Copper in GBs studies are needed.

Acknowledgment

- Many thanks to Akihiro Kikuchi (NIMS, Japan) for providing Ti alloyed bronze.
- Alexander Wozny and Jonathan Wozny for their support with bronze substrate polishing.
- This work at ASC, NHMFL-FSU was funded by U.S. Department of Energy, Office of Science, Office of High Energy Physics under Award No. DE-SC 0018379.
- A portion of this work was performed at the National High Magnetic Field Laboratory, which is supported by National Science Foundation Cooperative Agreement No. DMR-1644779 and the State of Florida.

Backup Slides

Bronze route Nb₃Sn films for SRF cavities

Nb₃Sn

Nb

bronze

at 200 °C

Cu-Sn layer

etch

- Low temperature deposition allows bronze or Cu base cavity.
- Simplest case, Nb₃Sn coated bronze cavities.
- Significant material cost saving from switching Nb host cavity to a bronze or Cu host cavity.
- Easy fabrication and scaling.
- Cu at grain boundaries, Effect on RF?
- Low thermal conductivity, Engineering solutions?

Proposed deposition chamber

More introduction

Nb – Sn phase diagram

Bronze process

LIQUID 2000 2000 NbaSn + LIQUID Nb a S 15004 ≪-NIOBIUM AND Nb35n 1000 930 ± 8°C boSns+ LIQUID 845 ± 7°C Nb6Sn5 500 500 NbSng + LIQUID Nb₆Sn₅ + Nb Sn₂ 231.9°C Nb3Sn+Nb6Sn5 N b 5 n₂ + 5 n J. P. Charlesworth et al J. Mat. Sci.5, 580 (1970) Nb₃Sn layer at the Nb core interface lower Diffusion reaction α bronze heat treatment

Fractographs of a bronze route Nb₃Sn filament

To synthesis pure Nb₃Sn by reacting Nb and Sn directly require temperatures above 930 °C.

- Eliminates the use of Cu substrate cavity in Nb – Sn direct reaction -> Significant material costs
- Require sophisticated furnace systems for Nb – Sn reaction.
- Bronze route is a well-established technique in Nb₃Sn wire fabrication.
- Bronze route guarantees only the pure Nb_3Sn phase at much lower temperatures (~600 800 °C).

P.J. Lee, D.C. Larbalestier, IEEE Transactions 11 (2001)

15

Cu-Sn phase digram

CTE mismatch

