Development of Nb₃Sn Cavity by Vapor Diffusion Method at IMP

Ziqin Yang*(yzq@impcas.ac.cn), Yuan He IMP, CAS 2020-11-13

- 1. Background and demands
- 2. Nb₃Sn coatings at IMP
 - Before the upgradation of the system
 - > Upgradation of the deposition system
 - > After the upgradation of the system
 - Construction of the production-style furnace
- 4. Prospects and discussion

SRF has been adopted by most advanced accelerator projects that are being constructed and proposed

□ Under construction (China) , 856 cavities:

- Shanghai High repetition rate XFEL and Extreme light facility (SHINE) : 616 cavities (1.3GHz, 3.9GHz) ;
- China initiative accelerator driven system (CiADS) : 137 cavities (162.5MHz、325MHz、650MHz) ;
- High-intensity heavy ion accelerator facility (HIAF) : 96 cavities (81.25MHz、162.5MHz、325MHz) ;
- High energy photo source (HEPS) : 7 cavities (166.7MHz, 500MHz) .

□ In design (China) :

.

- Circular Electron Positron Collider (CEPC) : 336 (1.3GHz, 650MHz) ;
- Dalian coherent light source (DCLS) phase-II;
- China Spallation Neutron Source (CSNS) phase-II ;

Parameter	Niobium	Nb ₃ Sn		Nb cavity at 2K/E _{pk} =32MV/m		Nb ₃ Sn cavity at 4.2K/E _{pk} =32MV/m		Refrigeratio n power
Transition temperature	9.2 K	18 K						
Superheating field	240 mT	425 mT		P _{diss} /W	P _{AC} /kW	P _{diss} /W	P _{AC} /kW	saved /k w
Higher critical temperature → Operation at 4.2 K Higher superheating field → Double the limit of niobium			1.3GHz 9-cell	9.86	7.58	14.8	3.44	4.14
			650MHz 062	20.88	16.06	17.83	4.15	11.92
			650MHz 082	22.02	16.94	18.80	4.37	12.57

Saved ~2MW for SHINE, ~0.8MW for CiADS : Substantial cost savings for large facilities.

The most promising SRF new technology, its engineering application will bring huge impact on both large facilities and industrial-class accelerators.

`•-**@**-{

1. Background and demands

2. Nb₃Sn coatings at IMP

- Before the upgradation of the system
- Upgradation of the deposition system
- > After the upgradation of the system
- Construction of the production-style furnace

4. Prospects and discussion

IMP deposition system before upgradation

Initial coating condition trial run before upgradation

The first furnace for the coating of Nb₃Sn cavity by vapor diffusion method in China

IMF

6

Coating with cavity and Sn source at 1200°C

Sn content is low and rich of holes in IMP samples

Coating with separate control of cavity and Sn

The same preprocessing as before

Coating process with cavity and Sn at different Tem 1400 1.0E+00 1200 1.0E-01 emperature/^oC 1000 1.0E-02 800 1.0E-03 1.0E-04 600 400 1.0E-05 200 1.0E-06 1.0E-07 0 1000 2000 3000 4000 Time Cavity: T1 — Cavity: T2 — Cavity: T3 — Sn source: T1 — Vacuum

Recipe (based on Cornell) :

- 1. Degassing at 200°C for 24 hours;
- Nucleation at 500°C for 5 hours;
- 3. Coating for 3 hours with Sn at1200°C & cavity at 1100°C;
- 4. Annealing at 1100°C for 6 hours;
- 5. Cool down naturally;

Non-uniform coverage due to unreasonable desig

Coating with elevated temperature of Sn source

Tc of the middle sample: 18.07K 0.002 0 moment/emu -0.002 -0.004 -0.006 OUG -0.008 -0.01 17.9 18.1 18.4 18.5 18.6 18 18.2 18.3 Temperature/K

Tc of the up sample: 18.3K

Cold test of the 6th coated Nb3Sn cavity

- Obvious improvement: <u>Q₀~7.6e9 @ 4.2K @ low</u> field region, quenched at Eacc=8MV/m with Q₀~5.5e9;
- Obvious performance gap: Q value is ~three times lower than Cornell value, Eacc,max is ~half of Cornell value;

Defects were responsible to the early quench?

1. Removal of Nb3Sn by BCP needs special requirements and optimization; 2. More suspected caused by mechanical processing and deep-drawing.

Badly contamination from carbon

No Nb coating chamber + No cleanliness during installation = Badly contaminated coating process!

- ΔT depends on the purity of the material, the integrity of the crystal, and the stress state inside;
- The difference comes from the contamination, the coating process, or the test methods?

Urgent need for the upgradation

Upgradation of the deposition system

The deposition system after upgradation

Callibration of the temperature by K-type thermocouples

Temerature difference within 10°C at 1100°C

Background pressure reached 6.5e-5Pa at 1100°C

`e-**@**-

Simulation of the Sn evaporation

Temperature/K
Vacuum/Pa

Recent coating after the upgradation

Lowered into the furnance after the upgradation

Callibration by k-type thermocouple						
T outside	T inside	ΔT				
1040	1105	65				
1050	1114	64				
Simulation results						
1135	1198	63				

The calculated \triangle T was 63°C, agrees well with the callibrated \triangle T of 64-65°C

Obvious grain growth after many times of experiments

Typical matte grey inner surface after coating

- 1. No carbon cmination any more;
- 2. Average Sn content $\sim 23\%$;
- 3. The Sn temperature should be elevated slightly.

- 1. T_c was lower than 18K;
- 2. $\triangle T_c$ of M-T measurements was still ~0.7K;
- 3. $\triangle T_c$ of R-T measurements was only ~0.1K;

The newly coated cavity is being prepared for vertical test

Production-type Nb₃Sn Coating Apparatus

Body being processed and assembled

Flange of the Nb chamber

Maching of the Nb chamber after deep drawing

- 1. Application oriented and capable of coating production-type cavities such as 650MHz 5/6 cell or 1.3GHz 9-cell cavities;
- 2. Expect the Installation and commissioning to be completed before the Spring Festival and the coating experiment can be carried out in the first half of 2021.

- 1. Background and demands
- 2. Nb₃Sn coatings at IMP
 - Before the upgradation of the system
 - > Upgradation of the deposition system
 - > After the upgradation of the system
 - Construction of the production-style furnace

4. Prospects and discussion

- Before the upgradation:
 - 1. Q_0 and Eacc was lower \rightarrow limit factors were explored;
 - 2. Coating experience and understanding was accumulated;
 - 3. The deposition system has been upgraded;
- After the upgradation:
 - 1. Carbon contamination has been excluded;
 - 2. Exact temperature calibration has been obtained;
 - 3. Coating experiment has been carried out;
 - 4. Low temperature baking effects will be examined and verified in the near future;
- Production-style furnance:
 - 1. The first multi-cell Nb3Sn cavity would be expected to be coated in the first half of 2021.

Thanks for your attention. Welcome worldwide cooperation!