Electrochemical Bronze Route for SRF Cavities

<u>Choong-Un Kim</u> and Geng Ni Materials Science and Engineering/University of Texas at Arlington Wenura K. Withanage, Lance D. Cooley Peter J. Lee, C. Reis, and Shreyas Balachandran National High Magnetic Field Laboratory/ Florida State University John Buttles Bailey Tools Manufacturing

This research is funded by DOE Accelerator Stewardship Program: DE-SC0018379

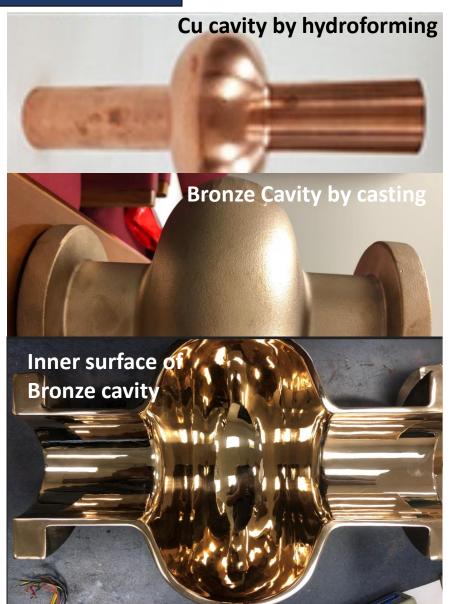
Project Objective of Multi-Institute Research Team

Main objective

- explore enabling processes for thin film $\rm Nb_3Sn~SRF$ cavity technology
- identify challenges and understand underlying mechanism behind each challenge

Research team

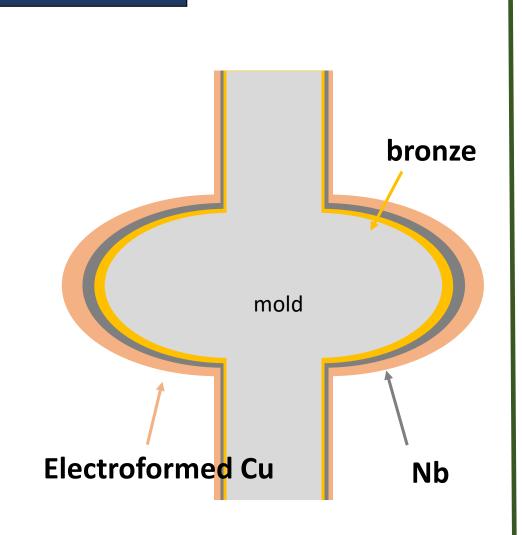
- Overall lead: NHMFB/FSU
- Cavity structure and production: BTM
- PVD route: NHMFB/FSU
- Electrochemical route: UT Arlington
- At Nb₃Sn SRF2020
 - PVD route and Nb₃Sn growh study: presentation by Dr. W.
 Withanage
 - this presentation: SRF by electrochemical method



Fermi Lab 9-cell Nb SRF

Research Motivation: Seamless Thin Film SRF Cavity

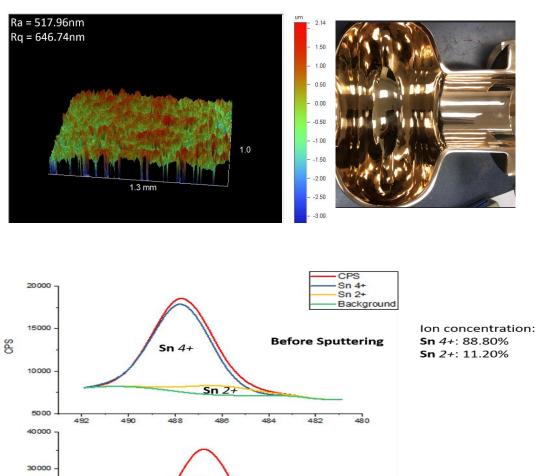
Seamless thin film SRF cavity


- next generation SRF cavity technology
- high electrical and thermal conductivity
- cost effective production and operation when realized
- Nb₃Sn by Bronze route
 - Nb₃Sn is well utilized superconducting phase
 - Nb_3Sn can be of thin film
 - bronze route can enable formation and growth of thin film Nb_3Sn at ~700C.
- Various process routes and form factors
 - Nb thin film on bronze cavity.
 - Nb/bronze thin film on Cu cavity

Produced by BTM

Why Electrochemical Routes?

- Advantages in process aspects
- conformal deposition of thin films
- naturally purifying process
- economical when enabled
- Desire for bottom up approach
- difficulty of thin film deposition on inner surface of cavity
- cavity with Nb3Sn layer can be produced by all thin film processes
- polishing/repair is possible at every interface formation



Surface Chemistry of Bronze after Electropolishing

- EP prepared surface is not clean
 - etching solutions react with Sn, leaving Sn²⁺ and Sn⁴⁺ compounds
 - the compounds interfere with Nb₃Sn reaction

- Bottom-up is even more desired
 - electroplating can provide clean/flat surface of bronze
 - Cu(Sn) bronze is possible to electroplate
 - Nb can be deposited on top of bronze
 - bronze can be deposited on top of Nb

Sn 2-

Binding Energy

After 3min Sputtering

482

SdC

20000

10000

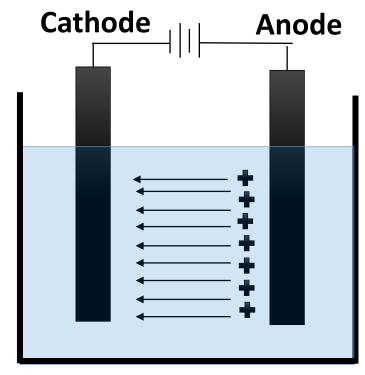
concentration:

Sn 4+: 61.17%

Sn 2+: 38.83%

Electrochemical Deposition of Niobium and Bronze

Electrochemical deposition


- rely on a simple electrochemical principle
- overcomes limitations of PVD methods
- conformal deposition
- simple equipment
- cost effective and consistent production

Nb plating

- no past success in plating metallic/pure Nb
- almost no studies on Nb electrochemistry

Bronze plating

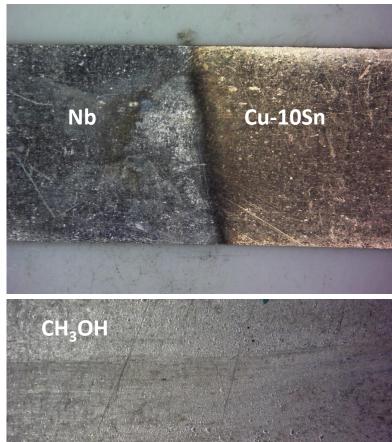
- no prior experience on plating bronze on Nb
- Cu/Sn composite plating has been attempted with some successes

Metal ions

Bronze Plating on Nb

- Cu and Sn is electrochemically active
 - both produces CN compounds
 - co-plating is possible in CN bath

Main challenges


- achieving/maintaining desired composition
- removal of surface oxide of Nb

Two bath types for comparison

- Cyanide bronze plating bath (H₂O based) at 70C
- MeOH w/ SnCl₂ + bronze electrode at 40C

Main Result

- H_2O : blistering when layer becomes >~0.3um
- CH₃OH: stable film over 1um

Nb Electrochemistry Against Its Plating

- Our studies have identified plating barriers
 - preferential reaction with OH- and O- in aqueous solution (Nb oxide plating not Nb)
 high oxidation potential; easy to be oxidized
 multi-valence states: disproportional reaction
 reactive Nb salt (NbCl₅, NbF₅)

Developed approaches

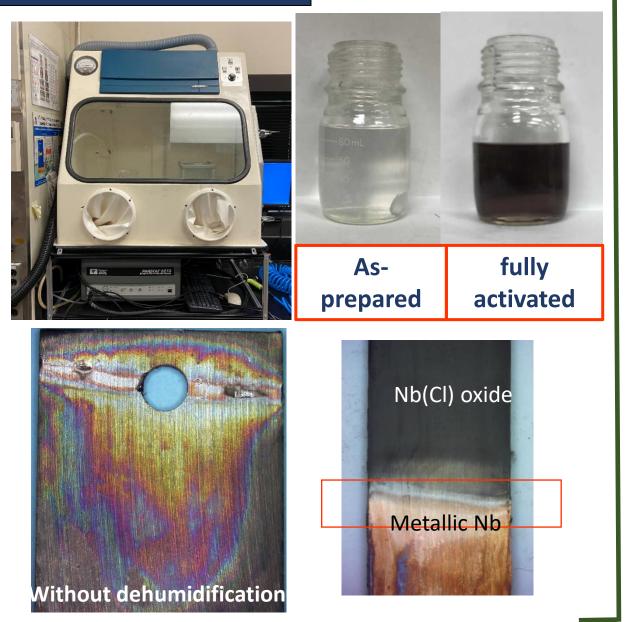
- 1) MeOH as electrolyte solution
- 2) process in N2 filled environment/dehumidify MeOH
- 3) pre-electrolysis treatment of electrolyte
- 4) plate substate with ~50nm Au as protector add chemicals to remove Cl- from the solution

Half-Reaction	%~ (N)
$O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$	0.40
$Cu^{2+} + 2e^- \rightarrow Cu$	0.34
$Hg_2Cl_2 + 2e^- \rightarrow 2Hg + 2Cl^-$	0.27
$AgCl + e^- \rightarrow Ag + Cl^-$	0.22
$\mathrm{SO_4^{2-}} + 4\mathrm{H^+} + 2\mathrm{e^-} \rightarrow \mathrm{H_2SO_3} + \mathrm{H_2O}$	0.20
$Cu^{2+} + e^- \rightarrow Cu^+$	0.16
$2H^+ + 2e^- \rightarrow H_2$	0.00
$Fe^{3+} + 3e^- \rightarrow Fe$	-0.036
$Pb^{2+} + 2e^- \rightarrow Pb$	-0.13
$\mathrm{Sn}^{2+} + 2\mathrm{e}^- \rightarrow \mathrm{Sn}$	-0.14
$Ni^{2+} + 2e^- \rightarrow Ni$	-0.23
$PbSO_4 + 2e^- \rightarrow Pb + SO_4^{2-}$	-0.35
$Cd^{2+} + 2e^- \rightarrow Cd$	-0.40
$Fe^{2+} + 2e^- \rightarrow Fe$	-0.44
$Cr^{3+} + e^- \rightarrow Cr^{2+}$	-0.50
$Cr^{3+} + 3e^- \rightarrow Cr$	-0.73
$Zn^{2+} + 2e^- \rightarrow Zn$	-0.76
$2H_2O + 2e^- \rightarrow H_2 + 2OH^-$	-0.83
$Mn^{2+} + 2e^- \rightarrow Mn$	-1.18
$Al^{3+} + 3e^- \rightarrow Al$	-1.66
$H_2 + 2e^- \rightarrow 2H^-$	-2.23
$Mg^{2+} + 2e^- \rightarrow Mg$	-2.37
$Ia^{3+} + 3a^- \rightarrow Ia$	-237

Fig 2. Standard reduction potential of metals

Key Approaches and Issues in Nb Plating

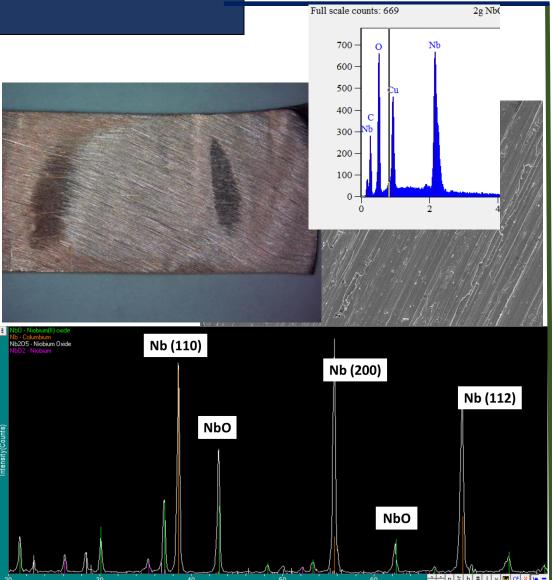
MeOH as electrolyte


- organic solvent
- high solubility for key Nb salt (NbCl₅)
- weak electrolyte: CH³⁺, OH⁻

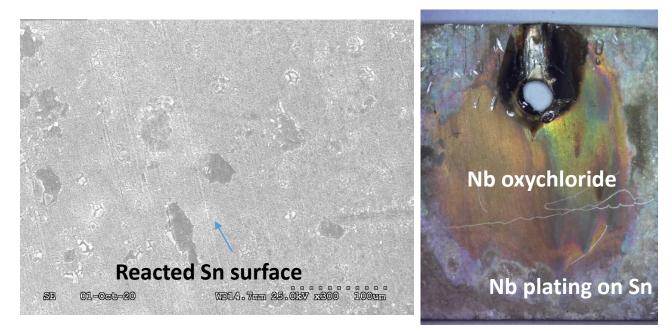
Pre-electrolysis

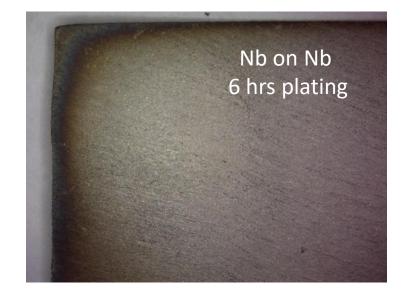
- converts Nb⁵⁺ to Nb⁴⁺
- remove moisture : $CH_3 + H_2O = 3H_2 + CO_2$

Surface protection or additives


- main barrier against scale-up plating
- electrolyte chemically reacts with Cu and Sn, contaminates the bath

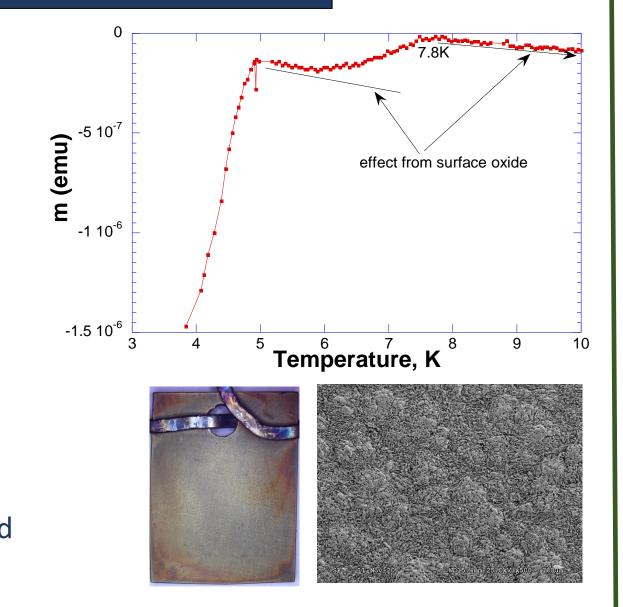
Plating Success in a Small Scale Bath


Metallic Nb is plated


- 1st time in history, silvery Nb is plated
- MeOH with NbCl₅ as electrolyte, Nb as Anode, Cu as cathode (others work as well).
- weak electrolyte: CH³⁺, OH⁻
- But, Nb quality worsens with continued plating
 - starts to produce layer with dull texture; oxide and oxychloride layer
 - the problem worsens when electrolyte is more
 - major obstacle against scale-up plating

Contamination: Barrier Against Scale-up Plating of Pure Nb

- The electrolyte fouling is found to be linked to contamination from the substrate
 - plating in small amount of electrolyte works well
 - Nb plating on Nb works even in large bath
 - Au coating before Nb coating substantially extends the life of electrolyte


Evidence of Superconductivity from Electroplated Nb

Thin Nb plated on Au/bronze

- Au is to protect bronze surface
- Nb₃Au's property is similar to Nb₃Sn
- ~50nm Au may be practical and produces Nb₃(Sn,Au) superconductor

T_c~7.4K

- reduced from 9.2K probably due to 1) thinness of film and 2) surface oxide
- upward slopes in *m* may indicates surface oxide (Nb₁₂O₂₉)
- transition at 5.4K may also be related to oxide
- oxide effect will be reduced and eliminated in thick Nb

Trial of Bottom-up Process

Partial but important success

- key processes are tried staring from wax model to Nb (~3" tall)
- cracks and uneven coating are seen due to improper handling of the sample; optimization is in progress

Wax sample

Conductive layer Cu electroplating for painting strength Cu polishing

Au/Bronze

Optimization Needs: Stress

Cracking in the plated layers

- needs thicker inner Cu to provide sufficient strength until completion of all coatings (then remove)
- easy problem to solve
- Surface roughing with thick coating
 - nature and can be minimized
 - polishing can be conducted
- CTE driven delamination during reaction inducing process
 - needs to adjust bronze layer/Nb thickness ratio
 - may need to use buffer layer (crack shown here probably formed during heating ramp)

Conclusion and Future Work

- Electroplating processes for bronze route is more than feasible
 - metallic and pure Nb can be plated on Cu and bronze
- thin Au layer may make Nb/bronze process more practical with Au protecting electrolyte
- mechanisms behind past challenges in electroplating processes are well understood to the level to try the "bottom-up" construction of SRF.

Future Work

- continue with process optimizations
- produce well processed model SRF entirely made by electroplating process, staring from the wax to the electroformed Cu.

Acknowledgement

DOE Funding (*DE-SC0018379*)

Collaborators

- at FSU/National High Magnetic Field Laboratory
- at Baileytools
- at UT Arlington: PhD Students