Virtual International Workshop on Nb₃Sn SRF Science, Technology, and Applications, November 11th, 2020

Spatially Resolved Adsorption Structure and Diffusion Dynamics of Sn on (3×1)-O Nb(100)

Rachael G. Farber, Sarah A. Willson, Nathan S. Sitaraman[‡], Tomas A. Arias[‡], and Steven J. Sibener

Sibener Group The James Franck Institute and Department of Chemistry The University of Chicago

[‡] Cornell University, Department of Physics, Ithaca, NY

HE UNIVERSITY OF

Virtual International Workshop on Nb₃Sn SRF Science, Technology, and Applications, November 11th, 2020

The Sun and Her Flowers

you do not just wake up and become the butterfly

- growth is a process

Structure and ×1)-O Nb(100)

an[‡], Tomas A. Arias[‡], and

HE UNIVERSITY OF

<u>Rachael G. Farber</u>, Sarah

Spatially Res

Diffusion Dyn

The James Franck Institute and Department of Chemistry The University of Chicago

[‡] Cornell University, Department of Physics, Ithaca, NY

http://sibener-group.uchicago.edu/

Vapor Diffusion Procedures for Nb₃Sn SRF Cavities and Resultant Cavity Performance

- Vapor diffusion is a prominent technique for Nb₃Sn film growth
- Current Nb₃Sn SRF cavities quench ~ 17 MV/m
 - Far below the theoretical maximum of 96 MV/m
- Defects in the Nb₃Sn film lower cavity performance
 - 1. Nb oxide thickness
 - 2. Underlying substrate crystallography
 - 3. Sn nucleation and diffusion behavior

A thorough understanding of the structural and chemical features influencing Nb₃Sn growth must be realized

U. Pudasaini, G. Eremeev, C. E. Reece, G. Ciovati, I. Parajuli, N. Sayeed, M. J. Kelley. *SRF2019*, Dresden, Germany, 65-70 (2019) R. D. Porter, T. Arias, P. Cueva, D. L. Hall, M. Liepe, J. T. Maniscalco, D. A. Mueller, N. Sitaraman. *LINAC'18*, Beijing, China, 462-465 (2018)

The Underlying Nb Substrate Influences Nb₃Sn Growth and Film Quality

- There is not a thorough understanding of the Nb₃Sn growth mechanism on Nb substrates
- Nb substrate properties are known to effect Nb₃Sn film quality
 - Underlying substrate crystallography
 - Native oxide thickness
- A thicker native oxide layer results in more homogeneous Sn coverage, enhanced RF shielding, and enhanced cavity performance

An atomic-scale, mechanistic investigation into the relationship between Nb oxide and Nb₃Sn formation is necessary to inform predictive Nb₃Sn growth models

R. D. Porter, T. Arias, P. Cueva, D. L. Hall, M. Liepe, J. T. Maniscalco, D. A. Mueller, N. Sitaraman. LINAC'18, Beijing, China, 462-465 (2018)

The Underlying Nb Substrate Crystallography Influences Nb₃Sn Growth Behavior

- Nb₃Sn growth as a function of Nb surface termination
 - Cylindrical (rod) Nb(110) single crystal
 - Nb(110), Nb(100), Nb(211), and Nb(100)
- The Nb(111) sample had undesired Nb₃Sn film properties
 - Contaminant incorporation
 - Irregular grain size and roughness

Crystallographic orientation of the underlying Nb substrate influences contaminant incorporation and Nb₃Sn film quality

V. Diadiuk, J. Bostock, M. L. A. MacVicar, IEEE Trans. Magn., 15, 610-612 (1979)

Analysis of Nb₃Sn/Nb SRF Cavity Coupons and Surface Mediated Nb₃Sn Growth Behavior

- Continuing efforts to understand the growth mechanisms of Nb₃Sn
 - Strong relationship between Sn heterogeneity and irregular grain size to the Nb surface orientation
 - Influence of Nb₂O₅ on Sn nucleation and diffusion
- Minimize imperfections and defects in Nb₃Sn film
- There is still not a comprehensive understanding of the surface mediated processes guiding Nb₃Sn growth

J. Lee, S. Posen, Z. Mao, Y. Trenikhina, K. He, D. L. Hall, M. Liepe, D. N. Seidman, Supercond. Sci. Technol., 32, 024001 (2019)

Leveraging Ultra High Vacuum Surface Science Techniques to Elucidate Nb₃Sn Growth Mechanisms

- How does the native (3×1)-O surface oxide participate in Sn adsorption?
- 2. How does sample temperature impact Sn diffusion behavior?
- 3. Do atomic scale surface defects (step edges) influence Sn adsorption or diffusion behavior?

Using ultra-high vacuum (UHV) surface-sensitive techniques we aim to identify the interactions guiding Sn adsorption and diffusion on the (3 × 1)-O Nb(100) surface

R. D. Porter, T. Arias, P. Cueva, D. L. Hall, M. Liepe, J. T. Maniscalco, D. A. Mueller, N. Sitaraman. LINAC'18, Beijing, China, 462-465 (2018)

Nb(100) (3×1)-O as a Model System to Study Nb₃Sn Growth Mechanisms

- Use Nb(100) (3×1)-O as a model system to compare to actual SRF cavity studies
 - It is understood that the (100) orientation forms favorable Nb₃Sn films
- Actual Nb SRF cavities have a native oxide (Nb₂O₅) layer present
- Nb(100) annealed at T_{crystal} = 1800 K
 - (3×1)-O ladders (NbO) across the Nb(100) surface

1st layer Nb 2nd layer Nb 3rd layer Nb

1st layer O
2nd layer O

Nb(100) serves as a model system due to the highly ordered (3×1)-O ladders that provide a structural reference for Sn adsorption and diffusion and structural stability at elevated temperatures

J. Lee, S. Posen, Z. Mao, Y. Trenikhina, K. He, D. L. Hall, M. Liepe, D. N. Seidman, *Supercond. Sci. Technol.*, **32**, 024001 (2019) V. Diadiuk, J. Bostock, M. L. A. MacVicar, *IEEE Trans. Magn.*, **15**, 610-612 (1979)

Ultra-High Vacuum Apparatus for *In Situ* Nb₃Sn Growth Experiments

- In situ surface characterization using UHV surface science techniques
 - Electron beam (e-beam) evaporation source
 - Submonolayer Sn deposition
 - Quartz crystal microbalance (QCM)
 - Calibrate Sn deposition rates (sub-monolayer (ML))
 - Auger electron spectroscopy (AES)
 - Elemental analysis
 - Temperature programmed desorption (TPD)
 - Identify and quantify gas-phase species
 - X-ray photoelectron spectroscopy (XPS)
 - Elemental analysis
 - Scanning tunneling microscopy (STM)
 - Real space structural information
 - Scanning tunneling spectroscopy (STS)
 - Electronic characterization

Sn Exposure Calibration and Analysis via QCM, AES, and STM

• QCM Calibration: $\Delta Hz \rightarrow \Delta ML$

• QCM: $5.51 \times 10^{14} \frac{Sn \ atoms}{Hz}$

- Tunable and reproduceable Sn deposition
- 0.5 ML Sn deposited at room temperature (300 K) shows <u>uniform surface adsorption</u>

In order to determine preferred surface adsorption sites with atomic scale resolution a smaller Sn exposure is needed

http://sibener-group.uchicago.edu/

^{~ 0.112955} ML/Hz

Preferred Surface Adsorption Site for ~ 0.25 ML Sn Deposited at 300 K

- Following Sn deposition at 300 K, Sn adatoms order between (3×1)-O ladder rows
- There is little adsorption along step edges or other surface defects

Sn adsorbs along (3×1)-O ladders. The oxide structure appears to influence Sn adsorption at 300 K more than larger surface defects.

Preferred Surface Adsorption Site for ~ 0.25 ML Sn Deposited at 300 K

 Following Sn deposition at 300 K, Sn adatoms order between (3×1)-O ladder rows
Sn adsorbs along (3×1)-O ladders. The oxide structure appears to

 There is little to no adsorption along step edges or other surface defects The oxide structure appears to influence Sn adsorption at 300 K more than larger surface defects.

Structural Evolution of Sn on (3×1)-O/Nb(100) Following Anneal at 500 °C

- Sn diffusion along (3×1)-O ladders
- Heterogeneous Sn structures
- Larger surface defects are not the primary site for Sn aggregation

There appears to be a barrier for Sn diffusion <u>across</u> the NbO ladders at Sn nucleation temperatures

Structural Evolution of Sn on (3×1)-O/Nb(100) Following Anneal at 600 °C

- The primary diffusion pathway appears to be between the (3×1)-O ladders with some growth across ladders
- Beginning to see migration towards larger scale defects (step edges)

Sn ML structures are growing in width and there is some Sn migration towards step edges

Structural Evolution of Sn on (3×1)-O/Nb(100) Following Anneal at 700 °C

- Sn/(3×1)-O interactions are still dominant over larger surface defects
 - Step edges are not saturated
- Sn ML structures are anchored by terrace step edges

Sn ML width is contained within NbO ladder structure, but Sn is now interacting with terrace step edges

Structural Evolution of Sn on (3×1)-O/Nb(100) Following Anneal at 800 °C

- Sn adlayer spanning entire terrace from step edge to step edge
- Step edge reconstruction associated with Sn diffusion
 - Sn oxidation?
 - NbO reconstruction?

http://sibener-group.uchicago.edu/

Evidence of structural evolution of (3×1)-O surface with continued Sn diffusion

Structural Evolution of Sn on (3×1)-O/Nb(100) Following Anneal at 900 °C

- Sn desorbed from (3×1)-O/Nb(100) surface
- Underlying (3×1)-O surface oxide has visible defects
 - Step edges no longer show evidence of reconstruction

All Sn has desorbed from the (3×1)-O/Nb(100) surface. This is a consequence of low Sn coverages under UHV conditions

http://sibener-group.uchicago.edu/

Structural Evolution of Sn on (3×1)-O/Nb(100) Following Anneal at 900 °C

Sn desorbed from (3×1)-O/Nb(100) surface

- Underlying (3×1)-O surface oxide has visible defects
 - Step edges no longer show evidence of evolution

All Sn has desorbed from the (3×1)-O/Nb(100) surface. This is a consequence of low Sn coverages under UHV conditions

Structural Evolution of 0.5 ML Sn on (3×1)-O/Nb(100) Following Anneal at 500 °C

- There is minimal evolution to the Sn adlayer with prolonged annealing at 500 °C
- High resolution STM imaging shows complex Sn ML structure
- Sn also seen to adsorb to (3×1)-O ladder edges

There is minimal structural evolution following prolonged annealing at 500 °C

Structural Evolution of 0.5 ML Sn on (3×1)-O/Nb(100) Following Anneal at 500 °C

- There is minimal evolution to the Sn adlayer with prolonged annealing at 500 °C
- High resolution STM imaging shows complex Sn ML structure
- Sn also seen to adsorb to (3×1)-O ladder edges

There is minimal structural evolution following prolonged annealing at 500 °C

Summary and Ongoing Work: Sn Adsorption and Diffusion Behavior on Oxidized Nb(100)

- Initial results investigating Sn/(3×1)-O/Nb(100)
 - Visualization of Sn adsorption and diffusion behavior
 - Sn adlayer structure does not significantly change with increased annealing at 500 °C

Using UHV surface science techniques, we have visualized Sn adsorption and diffusion behavior on oxidized Nb(100) at relevant Nb₃Sn growth temperatures

Summary and Ongoing Work: Sn Adsorption and Diffusion Behavior on Oxidized Nb(100)

- Ongoing work is focused on:
 - STS: electronic characteristics of Sn adlayers
 - XPS: oxidation of Sn and Nb as a function of Sn coverage and annealing temperatures
 - Collaboration with Arias group for theoretical support

Using UHV surface science techniques, we have visualized Sn adsorption and diffusion behavior on oxidized Nb(100) at relevant Nb₃Sn growth temperatures

Acknowledgments

- Center for Bright Beams
 - U.S. National Science Foundation under award PHY-1549132, the Center for Bright Beams
- Cornell University Collaborators
 - Tomas Arias and graduate student Nathan Sitaraman

- Steve Sibener
- Sarah Willson
 - 3rd year PhD candidate

Thank you for your attention! Questions?

- Center for Bright Beams
 - U.S. National Science Foundation under award PHY-1549132, the Center for Bright Beams
- Cornell University Collaborators
 - Tomas Arias and graduate student Nathan Sitaraman

- Steve Sibener
- Sarah Willson
 - 3rd year PhD candidate

