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Motivation

• U.S. DOE report “Accelerators for America’s Future” outlines various applications of compact accelerators

– Spans across industry, medical fields, national security, etc.

– Examples include wastewater treatment, medical procedures & sterilization, cargo inspection, …

• Small-scale operations of SRF cavities face major barrier in complex cryogenics infrastructure

• Cryocoolers provide a cheaper and simpler (“turn-key”) alternative

• Nb3Sn cavities offer more efficient operation at 4 K – primary operation temperature

Successful operation of Nb3Sn SRF cavities using cryocoolers can 
help make SRF technology more accessible for such applications.
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Assembly Design

• Cryocooler: Cryomech model P420 with remote motor
– 2nd stage: 1.8 W @ 4.2 K

– 1st stage: 55 W @ 45 K

– Motor & reservoirs removed from

primary assembly

Primary compressor unit
• “Turn-key” operation
• Straight-forward system monitoring



Assembly Design

• Cavity: Nb3Sn-coated 2.6 GHz

• Thermal Connection: Copper braided straps

• Cernox sensors on 2nd stage, beam clamps, equator
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Nb3Sn Cavity

4K Cryocooler Stage

Thermal 
connection
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Initial Cooldown

• Initial cooldown from room temperature

• Cavity assembly cooled in approx. 4 hrs

– Note: clamp and equator curves are overlapping

• 1st stage and coupler require more time



Temperature Cycle – 30 K Re-cool

• Cavity warmed up to 30 K, then cooled 
back down

• Not showing 1st stage or coupler for clarity

• Other temperature cycles completed from 
20 K and 40 K – similar process

• Remaining analysis focuses on 30 K re-cool



RF Test Results: Q0

• 4.2 K VT (LHe Bath) baseline test
• Quench near 18 MV/m
• Low-field Q0 ~ 8E9

• Initial Cooldown test
• Eacc stable up to 8 MV/m
• Low-field Q0 ~ 2E9

• 30 K temperature cycle test
• Eacc stable past 10 MV/m
• Low-field Q0 ~ 6E9
• Q0 within factor of ~2 of 4.2 K VT
• Pdiss = 0.78 W at 10 MV/m

• Comfortably under 1.8 W
• Continuous operation

• dT/dt < 1 mK/s

VT / LHe Bath Baseline

30 K Re-cool

Initial Cooldown



RF Test Results: Temperatures

• 30 K Temperature Cycle
• Minimal heating under 4 MV/m
• Cavity just under 4 K at 10 MV/m
• Max cavity temp ~ 4.2 K

30 K Temperature Cycle

BCCBCT

➔ Stable operation at 10 MV/m at 4.2 K



RF Test Results: Temperatures

BCCBCT

• BCT slightly warmer than BCC
• Two gradient stages are approx. equal

• ~0.1 K difference at 10 MV/m

• Good baseline to use as comparison
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Cooldown Gradients

• Why does temperature cycling offer better performance?

• Look at thermal gradients at Tc

• Thermal gradients → Thermal currents → Trapped flux → Higher R0

Initial Cooldown

Gradient ≈ 740 mK

30 K Temp Cycle

Gradient ≈ 120 mK



• Linear fit slope: 15.5 nΩ/(K/m)

• Compare to results from R. Porter*

– Low-field sensitivity: 0.75 nΩ/mG

– Conversion factor: 6.2 mG/(K/m)
• Assume same value for 1.3 & 2.6 GHz

➔ 4.65 nΩ/(K/m)

• Within factor of 3-4

• Ignores “vertical” gradient

– Not a factor in VT due to symmetry

R0 Comparison

Conclusion: Reducing thermal gradients is crucial for high performance!

* Presented at TTC’19



Improvement: Thermal Gradients
• Added 1 kOhm resistors to both beam clamps

– Fine-tuned control during cooldown

• Successful implementation in recent test!
– Beam clamps held within 1-2 mK through Tc

– Best cooldown previously had ~ 120 mK

• Clamp-to-clamp gradient fixed
• “Vertical” gradient still an issue

~ 200 mK

< 5 mK



Comparison to Nb Conductivity

• Calculated using Pdiss and gradient between equator 
and beam clamps (averaged)

• Main contribution to gradient comes from niobium
– Contribution from copper clamps is negligible

Conclusion:
Good thermal contact to beam clamps



Clamp Heater Test

• RF off, system allowed to cool completely

• Calculate W/K using ΔGradient (heater on & off)
– Gradient is between 2nd stage and clamps

• Setting A: 0.025 W on BCC only

• Setting B: 0.025 W on BCT only



Clamp Heater Test

• Setting A: 0.025 W on BCC only
– ΔGradient = 0.044 K ➔ 0.57 W/K

• Setting B: 0.025 W on BCT only
– ΔGradient = 0.047 K ➔ 0.53 W/K

• Compare to 30 K temp cycle test at 10 MV/m
– Pdiss / 2 = 0.39 W

– ΔGradient to BCC = 0.354 K ➔ 1.1 W/K

– ΔGradient to BCT = 0.468 K ➔ 0.83 W/K

• Beam clamp temperature: roughly 2.7 K vs 3.4 K
– Can expect ~ 30% change due to Cu thermal cond.

Conclusion: Copper straps provide a reliable thermal pathway
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Next Steps: Near-term

• Reduce ambient magnetic fields
– Recent tests measured up to 60 mG near the cavity

– Potential re-magnetization due to thermal cycling?

• Microphonics analysis & suppression
– Large signal matches cryocooler pulse frequency

– Strength of microphonics effects varies significantly

– Reason for variation is currently unclear

– Next tests will include vibrational sensors on top plate



Next Steps: Long-term

• Three-year Stewardship Proposal – Accepted 

• Main Objective: Develop new cryomodule with integrated cryocooler for 4K 
operation of Nb3Sn cavities
– 1 MeV energy gain w/ currents up to 100 mA → input power up to 100 kW

– Requires low static & dynamic heat loads

– Requires reliable microphonics control

RF	power	coupler

Nb3Sn	SRF	cavity	

Cryocooler

Thermal	shield

Vacuum	vessel

45K

4.2K

Conceptual Illustration:



Summary

• Demonstrated successful continuous operation at 10 MV/m

– Max dissipated power well within 1.8 W

• Key finding: small gradients essential for performance

– Demonstrated successful clamp-to-clamp gradient control during cooldown

• Ambient field reduction and microphonics control offer potential for 
further improvement in performance

• Next long-term project: implementation in full-scale cryomodule

Thanks to M. Liepe, A. Holic, J. Sears & R. Porter
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