

FERMILAB-SLIDES-20-115-DI-LDRD-TD

Cryocooler conduction-cooled Nb₃Sn SRF at Fermilab

Ram C. Dhuley on behalf of the APS-TD/IARC conduction-cooled SRF team Nb₃SnSRF'20, Cornell University, 13 November 2020

Conduction-cooled Nb₃Sn SRF at Fermilab

Vision: Develop compact, turnkey e-beam source for environmental and industrial applications (~10 MeV, >>100 kW)

http://accelconf.web.cern.ch/AccelConf/napac2016/talks/thb3io02_talk.pdf

Pathway: Nb₃Sn SRF cavities

- cw operation enables high average beam power
- high Q₀ @ >4 K allows conduction-cooling using 4 K closed-cycle cryocoolers

R.D. Kephart, *SRF2015*. <u>https://accelconf.web.cern.ch/srf2015/papers/frba03.pdf</u> Patents: US10390419B2, US10070509B2, US9642239B2

Outline

- Development of a conduction-cooled Nb₃Sn SRF cavity and gradient demonstration
 - Fermilab LDRD (2016-2019)
- Studies of accelerator design based on conduction cooler Nb₃Sn SRF
 - DOE HEP Accelerator Stewardship (2015- present)
- Prototype cryogen-free SRF electron accelerator development
 - US Army Corps of Engineers/EDRC; NNSA (2017 present)

Conduction cooled Nb₃Sn SRF development (Fermilab LDRD 2016-2019)

Goal: demonstrate 10 MV/m cw on an Nb₃Sn cavity with cryocooler conduction cooling

Our choice:

- Single cell 650 MHz, <u>Nb₃Sn coated niobium</u> cavity
- Cryomech <u>PT420 cryocooler</u>
 (2 W @ 4.2 K with 55 W @ 45 K)
- High purity aluminum for the conduction cooling link

Cavity preparation for conduction link attachment

Conceptualization of conduction cooling

Development of conduction cooling

E-beam weld recipe development

- Full penetration
- Avoid weld beads on the RF surface

Conduction ring

Courtesy: C. Grimm (Fermilab)

Ring-welded single cell 650 MHz cavity

Thermal characterization of the conduction link

5N aluminum samples

Nb-Al bolted contacts

R.C. Dhuley, M.I. Geelhoed, J.C.T. Thangaraj, *Cryogenics*, 2018. https://doi.org/10.1016/j.cryogenics.2018.06.003

6

Conduction link design and performance verification

J. Thompson and R.C. Dhuley, 2019. <u>https://doi.org/10.2172/1546003</u> R.C. Dhuley *et al.*, *IEEE Trans. Appl. Supercond.*, 2019. https://doi.org/10.1109/TASC.2019.2901252

Conduction-cooled SRF cavity measurement setup

R.C. Dhuley et al., IOP Conf. Ser.: Mat. Sci. Eng., 2020. https://doi.org/10.1088/1757-899X/755/1/012136

First results for the conduction-cooled Nb₃Sn cavity

R.C Dhuley, S. Posen, M.I. Geelhoed, O. Prokofiev, J.C.T. Thangaraj, *Supercond. Sci. Technol.*, 2020. https://doi.org/10.1088/1361-6668/ab82f0

E-beam accelerator design studies with conduction cooled Nb₃Sn SRF (DOE Accelerator Stewardship 2015 - present)

Phase (year) / Fermilab Pl	Activity	Stewardship partner
I (2016-17) / R.D. Kephart	Conceptual design of a 250 kW and economic analysis of a 10 MeV, 1000 kW facility*	MWRD of Greater Chicago
II (2017-18) / J.C.T. Thangaraj	Conceptual design of a 10 MeV, 1000 kW module and economic analysis of a 10000 kW facility	
III (2019-in progress) / R.C. Dhuley	 Practical cryogenic design and cost analysis of a 1000 kW module Demonstration of 10 MV/m cw 	GENERAL ATOMICS

*Design reports available at: <u>https://iarc.fnal.gov/publications/</u>

Ongoing work to reach 10 MV/m

Design of a 10 MeV, 1000 kW (100 mA) module

- ✓ RF design of a 5-cell 650 MHz cavity
- Beam transport simulations (external injection 300 keV --> 10 MeV)
- Estimation of 4 K heat load, cryocooler selection
- Design and thermal simulations of conduction link
 Euclid BEAMLABS
- Cryostat design and integration (thermal and magnetic shield, vacuum vessel, couplers)
- Cost assessment

Prototype cryogen-free SRF electron accelerator development

(US Army Corps of Engineers/ERDC; NNSA)

Goal: Component production, integration, and demo of a 1.6 MeV, 20 kW accelerator (precursor to the 7-10 MeV, 200-250 kW module for pavement reconstruction, medical device sterilization)

650 MHz Nb₃Sn cavity (Cryoload ≈3.8 W @ 5 K)

Integrated thermionic cathode

Courtesy : I. Gonin, V. Yakovlev (Fermilab)

Low heat leak coupler (<1 W)

All components are fab ready.

Prototype cryogen-free SRF electron accelerator development

(US Army Corps of Engineers/ERDC; NNSA)

Cryostat (design in progress)

20 kW SSA (to be installed)

Cryomech PT420 coolers (commissioned and installed)

Courtesy : M.I. Geelhoed (Fermilab)

Prototype cryogen-free SRF electron accelerator development

(US Army Corps of Engineers/ERDC; NNSA)

Installation and test site is being prepared

MARS simulation for radiation shielding design

Courtesy : M.I. Geelhoed (Fermilab)

Accelerator enclosure

Acknowledgement

This presentation has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

- Conduction-cooled SRF demonstration: J.C.T. Thangaraj, Fermilab LDRD
- Accelerator design studies: R.C. Dhuley DOE HEP Accelerator Stewardship Award
- Compact SRF accelerator development: T. Kroc, R.C. Dhuley NNSA and R.D. Kephart, US Army Corps of Engineers (ERDC)
- Nb₃Sn SRF R&D: **S. Posen**, Fermilab LDRD and DOE Early Career Award

HEP Accelerator Stewardship

US Army Corps of Engineers (ERDC)

Northern Illinois UNIVERSITY Northern Illinois Center for Accelerator and Detector Development

Thanks! Questions?

Extra: Conduction link performance, cavity thermal stability

Comparison of measured and simulated link thermal conductance

Computed cavity surface temperature at steady state with 6.6 MV/m cw

- Ring temperature = 7.2 K (boundary condition)

