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SUPERCONDUCTIVITY UNDER
EXTREME CONDITIONS




* High pressure (H-rich compounds).

SUPERCONDUCTIVITY UNDER
EXTREME CONDITIONS




* High-speed vortex (Abrikosov-
Josephson).

SUPERCONDUCTIVITY UNDER
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SUPERCONDUCTIVITY UNDER * High magnetic field (magnets).
EXTREME CONDITIONS




SUPERCONDUCTIVITY UNDER | mag
EXTREME CONDITIONS * High frequency vs. high field

(Superconducting cavities).
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Accelerating field

HOW TO USE FLOQUET THEORY TO REDERIVE THE RESPONSE OF SUPERCONDUCTORS TO ELECTROMAGNETIC
FIELDS, (AND HOPEFULLY DESCRIBE NEW PHYSICS...)




OUTLINE

= Cooper problem: Binding energy of two electrons in a filled Fermi sea



OUTLINE

|
= Superconductor gap and ground-state energy using Floquet/BCS theory
|



OUTLINE

Dissipation: Paradigm shift?



OUTLINE

= Final Considerations



COOPER PROBLEM: BINDING ENERGY OF TWO ELECTRONS IN A

FILLED FERMI SEA

Thin slab in an AC field OX
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COOPER PROBLEM: BINDING ENERGY OF TWO ELECTRONS IN A

FILLED FERMI SEA
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TWO INTERACTING ELECTRONS

The other electrons prevent occupation below the Fermi level




COOPER PROBLEM: BINDING ENERGY OF TWO ELECTRONS IN A

FILLED FERMI SEA
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COOPER PROBLEM: BINDING ENERGY OF TWO ELECTRONS IN A
FILLED FERMI SEA

* High frequency limit
* Magnus expansion, BCH, ...
e Effective Hamiltonian

\ J
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* High frequency limit
* Magnus expansion, BCH, ...
* Effective Hamiltonian

Eckardt & Anisimovas, New J. Phys. (2015) \ /
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COOPER PROBLEM: BINDING ENERGY OF TWO ELECTRONS IN A

FILLED FERMI SEA
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COOPER PROBLEM: BINDING ENERGY OF TWO ELECTRONS IN A

FILLED FERMI SEA
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COOPER PROBLEM: BINDING ENERGY OF TWO ELECTRONS IN A

FILLED FERMI SEA

THE COOPER PROBLEM

* Change of coordinates and Fourier expansion

* Bethe-Goldstone equation for two interacting electrons
* The Cooper model

* Perturbation theory and binding energy

= pz’wZ Pi : pi22
HF:Z{ ot | Diy” D }+v<r1—r2>
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COOPER PROBLEM: BINDING ENERGY OF TWO ELECTRONS IN A

FILLED FERMI SEA

THE COOPER PROBLEM

* Change of coordinates and Fourier expansion

* Bethe-Goldstone equation for two interacting electrons
* The Cooper model

* Perturbation theory and binding energy
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COOPER PROBLEM: BINDING ENERGY OF TWO ELECTRONS IN A

FILLED FERMI SEA

THE COOPER PROBLEM

* Change of coordinates and Fourier expansion

* Bethe-Goldstone equation for two interacting electrons
* The Cooper model

* Perturbation theory and binding energy
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SUPERCONDUCTOR GAP AND GROUND-STATE ENERGY USING

FLOQUET/BCS THEORY
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FLOQUET/BCS THEORY
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SUPERCONDUCTOR GAP AND GROUND-STATE ENERGY USING

FLOQUET/BCS THEORY

SUPERCONDUCTOR GAP
_ 94 —1

A 1

—— = |sinh e

o vAO(1-3 (%)




SUPERCONDUCTOR GAP AND GROUND-STATE ENERGY USING

FLOQUET/BCS THEORY

GROUND-STATE ENERGY
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DISSIPATION




DISSIPATION

THE BCS PICTURE

m— [+ 2P

1D 4 B * Absorb a photon: transition to state with energy E + h ®
* Emit a photon: transition to state with energy E
* Conductivity proportional to net transition rate

E

Semiconductor model: Tinkham, Introduction to Superconductivity
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DISSIPATION

THE FLOQUET PICTURE

= E + 2hw
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NO PHOTON EMISSION OR ABSORPTION:
COHERENT SUPERPOSITION OF STATES
WITH ENERGY SEPARATED BY h o



DISSIPATION: CHANGE OF PARADIGM?

THE FLOQUET PICTURE

E + 2hw

E + hw

K
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DISSIPATION CAN ONLY HAPPEN WHEN
THE COHERENT SUM OVER FLOQUET
STATES IS BROKEN BY COLLISIONS



DISSIPATION: CHANGE OF PARADIGM?

THE BCS PICTURE THE FLOQUET PICTURE
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DISSIPATION: CHANGE OF PARADIGM?

THE BCS PICTURE THE FLOQUET PICTURE
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FINAL CONSIDERATIONS

* Towards a Floquet theory of periodically-driven superconductors.



FINAL CONSIDERATIONS

* Cooper problem in the high-frequency limit.



FINAL CONSIDERATIONS

* Preliminary results of a BCS theory using Floquet states.



FINAL CONSIDERATIONS

* Paradigm shift? Dissipation and the breaking of the coherent sum over Floquet states.
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