DANILO LIARTE* SEAN DEYO JAMES MANISCALCO MICHELLE KELLEY NATHAN SITARAMAN **TOMAS ARIAS** MATTHIAS LIEPE **JAMES SETHNA**

TOWARDS A FLOQUET THEORY OF PERIODICALLY DRIVEN SUPERCONDUCTORS

DANILO LIARTE *
SEAN DEYO
JAMES MANISCALCO
MICHELLE KELLEY
NATHAN SITARAMAN
TOMAS ARIAS
MATTHIAS LIEPE
JAMES SETHNA

TOWARDS A FLOQUET THEORY OF PERIODICALLY DRIVEN SUPERCONDUCTORS

- High pressure (H-rich compounds).
- High-speed vortex (Abrikosov-Josephson).
- High magnetic field (magnets).
- High frequency vs. high field (Superconducting cavities).

- High pressure (H-rich compounds).
- High-speed vortex (Abrikosov-Josephson).
- High magnetic field (magnets).
- High frequency vs. high field (Superconducting cavities).

- High pressure (H-rich compounds).
- High-speed vortex (Abrikosov-Josephson).
- High magnetic field (magnets).
- High frequency vs. high field (Superconducting cavities).

- High pressure (H-rich compounds).
- High-speed vortex (Abrikosov-Josephson).
- High magnetic field (magnets).
- High frequency vs. high field (Superconducting cavities).

- High pressure (H-rich compounds).
- High-speed vortex (Abrikosov-Josephson).
- High magnetic field (magnets).
- High frequency vs. high field (Superconducting cavities).

HOW TO USE FLOQUET THEORY TO REDERIVE THE RESPONSE OF SUPERCONDUCTORS TO ELECTROMAGNETIC FIELDS, (AND HOPEFULLY DESCRIBE NEW PHYSICS...)

- Cooper problem: Binding energy of two electrons in a filled Fermi sea
- Superconductor gap and ground-state energy using Floquet/BCS theory
- Dissipation: Paradigm shift?
- Final Considerations

- Cooper problem: Binding energy of two electrons in a filled Fermi sea
- Superconductor gap and ground-state energy using Floquet/BCS theory
- Dissipation: Paradigm shift?
- Final Considerations

- Cooper problem: Binding energy of two electrons in a filled Fermi sea
- Superconductor gap and ground-state energy using Floquet/BCS theory
- Dissipation: Paradigm shift?
- Final Considerations

- Cooper problem: Binding energy of two electrons in a filled Fermi sea
- Superconductor gap and ground-state energy using Floquet/BCS theory
- Dissipation: Paradigm shift?
- Final Considerations

The other electrons prevent occupation below the Fermi level

$$H = \frac{1}{2m} (p_1 - eA_1)^2 + \frac{1}{2m} (p_2 - eA_2)^2 - eA_0(r_1) - eA_0(r_2) + V(r_1 - r_2)$$

$$H = \frac{1}{2m} (p_1 - eA_1)^2 + \frac{1}{2m} (p_2 - eA_2)^2 - eA_0(r_1) - eA_0(r_2) + V(r_1 / \text{floquettheory})$$

$$U(t, t+T) = e^{iH_F T/\hbar}$$

$$H = \frac{1}{2m} (p_1 - eA_1)^2 + \frac{1}{2m} (p_2 - eA_2)^2 - eA_0(r_1) - eA_0(r_2) + V(r_1 / \text{floquettheory})$$

$$U(t, t+T) = e^{iH_F T/\hbar}$$

- High frequency limit
- Magnus expansion, BCH, ...
- Effective Hamiltonian

$$H = \frac{1}{2m} (p_1 - eA_1)^2 + \frac{1}{2m} (p_2 - eA_2)^2 - eA_0(r_1) - eA_0(r_2) + V(r_1 / \text{floquettheory})$$

$$U(t, t+T) = e^{iH_F T/\hbar}$$

- High frequency limit
- Magnus expansion, BCH, ...
- Effective Hamiltonian

$$H = \frac{1}{2m} (p_1 - eA_1)^2 + \frac{1}{2m} (p_2 - eA_2)^2 - eA_0(r_1) - eA_0(r_2) + V(r_1 / \text{floquettheory})$$

$$U(t, t+T) = e^{iH_F T/\hbar}$$

- High frequency limit
- Magnus expansion, BCH, ...
- Effective Hamiltonian

$$H = \frac{1}{2m} (p_1 - eA_1)^2 + \frac{1}{2m} (p_2 - eA_2)^2 - eA_0(r_1) - eA_0(r_2) + V(r_1 - r_2)$$

$$H_F = \sum_{i=1}^{2} \left\{ \frac{p_{i,x}^2}{2m} + \frac{p_{i,y}^2}{2m'} + \frac{p_{i,z}^2}{2m} \right\} + V(r_1 - r_2)$$

$$H=rac{1}{2m}\left(p_1-eA_1
ight)^2+rac{1}{2m}\left(p_2-eA_2
ight)^2$$
 Cyclotron frequency at maximum field $-eA_0(r_1)-eA_0(r_2)+V(r_1-r_2)$ $m'=m\left[1-rac{1}{2}\left(rac{\omega_c}{\omega}
ight)^2
ight]$

Cyclotron frequency at maximum field

$$\left[1 - \frac{1}{2} \left(\frac{\omega_c}{\omega}\right)^2\right]$$

$$H_F = \sum_{i=1}^{2} \left\{ \frac{p_{i,x}^2}{2m} + \frac{p_{i,y}^2}{2m'} + \frac{p_{i,z}^2}{2m} \right\} + V(r_1 - r_2)$$

- Change of coordinates and Fourier expansion
- Bethe-Goldstone equation for two interacting electrons
- The Cooper model
- Perturbation theory and binding energy

$$H_F = \sum_{i=1}^{2} \left\{ \frac{p_{i,x}^2}{2m} + \frac{p_{i,y}^2}{2m'} + \frac{p_{i,z}^2}{2m} \right\} + V(r_1 - r_2)$$

- Change of coordinates and Fourier expansion
- Bethe-Goldstone equation for two interacting electrons
- The Cooper model
- Perturbation theory and binding energy

$$H_F = \sum_{i=1}^{2} \left\{ \frac{p_{i,x}^2}{2m} + \frac{p_{i,y}^2}{2m'} + \frac{p_{i,z}^2}{2m} \right\} + V(r_1 - r_2)$$

- Change of coordinates and Fourier expansion
- Bethe-Goldstone equation for two interacting electrons
- The Cooper model
- Perturbation theory and binding energy

$$H_F = \sum_{i=1}^{2} \left\{ \frac{p_{i,x}^2}{2m} + \frac{p_{i,y}^2}{2m'} + \frac{p_{i,z}^2}{2m} \right\} + V(r_1 - r_2)$$

- Change of coordinates and Fourier expansion
- Bethe-Goldstone equation for two interacting electrons
- The Cooper model
- Perturbation theory and binding energy

$$V_{k,k'} = \begin{cases} -\frac{V}{L^2D}, & \text{if } \left| \frac{\hbar^2 k^2}{2m} - \epsilon_F \right| \text{ and } \left| \frac{\hbar^2 k'^2}{2m} - \epsilon_F \right| < \hbar \omega_D \\ 0, & \text{otherwise.} \end{cases}$$

- Change of coordinates and Fourier expansion
- Bethe-Goldstone equation for two interacting electrons
- The Cooper model
- Perturbation theory and binding energy

$$-\epsilon \approx 2\hbar\omega_D e^{-\frac{2}{V\mathcal{N}(0)}} \left[1 - \frac{1}{6} \left(\frac{2}{V\mathcal{N}(0)} + \frac{\epsilon_F}{\epsilon_D} e^{\frac{2}{V\mathcal{N}(0)}} \right) \left(\frac{\omega_c}{\omega} \right)^2 \right]$$

- Change of coordinates and Fourier expansion
- Bethe-Goldstone equation for two interacting electrons
- The Cooper model
- Perturbation theory and binding energy

$$-\epsilon \approx 2\hbar\omega_D e^{-\frac{2}{V\mathcal{N}(0)}} \left[1 - \frac{1}{6} \left(\frac{2}{V\mathcal{N}(0)} + \frac{\epsilon_F}{\epsilon_D} e^{\frac{2}{V\mathcal{N}(0)}} \right) \left(\frac{\omega_c}{\omega} \right)^2 \right]$$

SUPERCONDUCTOR GAP

$$\frac{\Delta}{\hbar\omega_D} = \left[\sinh\left(\frac{1}{V\mathcal{N}(0)\left(1 - \frac{1}{6}\left(\frac{\omega_c}{\omega}\right)^2\right)}\right)\right]^{-1}$$

SUPERCONDUCTOR GAP

$$\frac{\Delta}{\hbar\omega_D} = \left[\sinh\left(\frac{1}{V\mathcal{N}(0)\left(1 - \frac{1}{6}\left(\frac{\omega_c}{\omega}\right)^2\right)}\right)\right]^{-1}$$

SUPERCONDUCTOR GAP

$$\frac{\Delta}{\hbar\omega_D} = \left[\sinh\left(\frac{1}{V\mathcal{N}(0)\left(1 - \frac{1}{6}\left(\frac{\omega_c}{\omega}\right)^2\right)}\right) \right]^{-1}$$

GROUND-STATE ENERGY

$$\langle \psi_{BCS} | H_R' | \psi_{BCS} \rangle - E_0 = -\frac{1}{2} \mathcal{N}(0) \Delta^2 \left[1 - \frac{1}{2} \left(\frac{\omega_c}{\omega} \right)^2 \right]$$

THE BCS PICTURE

:

$$E+2\hbar\omega$$

$$E + \hbar \omega$$

- Absorb a photon: transition to state with energy E + h ω
- Emit a photon: transition to state with energy E
- Conductivity proportional to net transition rate

THE BCS PICTURE

:

$$E + 2\hbar\omega$$

- Absorb a photon: transition to state with energy E + h ω
- Emit a photon: transition to state with energy E
- Conductivity proportional to net transition rate

THE BCS PICTURE

:

$$E + 2\hbar\omega$$

- Absorb a photon: transition to state with energy E + h ω
- Emit a photon: transition to state with energy E
- Conductivity proportional to net transition rate

THE BCS PICTURE

NO PHOTON EMISSION OR ABSORPTION: COHERENT SUPERPOSITION OF STATES WITH ENERGY SEPARATED BY h ω

DISSIPATION: CHANGE OF PARADIGM?

DISSIPATION CAN ONLY HAPPEN WHEN THE COHERENT SUM OVER FLOQUET STATES IS BROKEN BY COLLISIONS

DISSIPATION: CHANGE OF PARADIGM?

DISSIPATION: CHANGE OF PARADIGM?

- Towards a Floquet theory of periodically-driven superconductors.
- Cooper problem in the high-frequency limit.
- Preliminary results of a BCS theory using Floquet states.
- Paradigm shift? Dissipation and the breaking of the coherent sum over Floquet states.

- Towards a Floquet theory of periodically-driven superconductors.
- Cooper problem in the high-frequency limit.
- Preliminary results of a BCS theory using Floquet states.
- Paradigm shift? Dissipation and the breaking of the coherent sum over Floquet states.

- Towards a Floquet theory of periodically-driven superconductors.
- Cooper problem in the high-frequency limit.
- Preliminary results of a BCS theory using Floquet states.
- Paradigm shift? Dissipation and the breaking of the coherent sum over Floquet states.

- Towards a Floquet theory of periodically-driven superconductors.
- Cooper problem in the high-frequency limit.
- Preliminary results of a BCS theory using Floquet states.
- Paradigm shift? Dissipation and the breaking of the coherent sum over Floquet states.

THANK YOU

