Recent Nb_3Sn Cavity Results from Fermilab

Sam Posen

Nb3SnSRF’20

13 November 2020
Fermilab Nb$_3$Sn Program Overview

- Nb$_3$Sn coating infrastructure established with support from Fermilab LDRD
 - Large 20” diameter coating chamber capable of coating even 650 MHz multicell cavities
- DOE Early Career Award supports primary Nb$_3$Sn SRF research program
 - Improve Nb$_3$Sn SRF performance (this talk)
 - Practical demonstrations towards accelerator applications (this talk)
 - Materials science in collaboration with D. Seidman’s group in Northwestern University (see J. Lee and T. Spina talks)
- In addition to ECA-supported research program, also several exciting smaller collaborations:
 - With Fermilab’s IARC to push towards industrial applications (R. Dhuley’s talk)
 - With Euclid Tech Labs as part of UED focused SBIR (R. Kostin’s talk)
 - With Argonne for NP applications
New Shiny Nb_3Sn Coatings

Changes in coating procedures led to shiny cavity appearance

\leftarrow Matte cell (typical)

\uparrow Shiny cell (atypical)
New Shiny Nb$_3$Sn Coatings

- First shiny cavity (1.3 GHz single cell) reached 24 MV/m with high Q_0 – compare to previous best for Nb$_3$Sn 18 MV/m
- Promising both for near term applications and progress towards reaching full potential
Shiny Coatings

• Common features among shiny coating procedures:
 – The niobium cavity substrates were EP’d prior to coating
 – The niobium substrates were anodized to 30 V in ammonia
 – To encourage high vapor pressure, the Sn heater was driven with maximum power available (~1200C-1250C in Sn crucible based on previous calibration)
 – To encourage high vapor pressure, a relatively large crucible diameter was used
 – To prevent condensation of Sn droplets on the surface due to a high vapor pressure in a closed volume, one or more ports of the cavity were kept open to the chamber (similar to the Cornell setup)
 – The nucleation step was substantially modified, to have a rapid ramp to high temperatures ~1000C – “High temperature nucleation”
 – A nitrogen infusion step was added at the end of the coating process
New Shiny Nb$_3$Sn Coatings

- Microscopy of shiny coatings show low surface roughness, small layer thickness, and small grain size – could explain improved gradient (reduced field enhancement and/or thermal impedance)
- Still working on reproducibility
Surface Roughness and Grain Size

- Note that the trend between grain size, thickness, and roughness was previously observed by researchers at JLab
- Consistent with expectations from other systems in which surface roughness derives from high differences between grains
- Smaller grains -> less height difference -> smoother surface
Role of Nitrogen

• Nitrogen added in low opportunity cost attempt to try to create “dirty” layer on surface
 – f vs T data fitting and PPMS measurements suggest our coatings are in clean limit for Nb_3Sn
• SIMS data suggest minimal nitrogen absorption if any (probably consistent with DFT presentations earlier this week)
• Nitrogen not expected to be playing a role in performance, but we continued to do it for consistency
Likely Multipacting Quenches

- Cavity plotted in previous slides showed strange quench behavior
- Line of heating at equator after quench
- 2nd sound transducers show quench behavior all around equator
- Suspected cause is multipacting
- Processing resulted in increased maximum field
Cryocooler-Based Cooling

650 MHz cavity B9AS-AES-002

~1 W dissipation at 10 MV/m, 4.4 K

Multipacting (limitation that was overcome during testing)

B9AS-AES-002, 4.4 K
B9AS-AES-002, 2.0 K

Multipacting (limitation that was overcome during testing)

e.g. Cryomech PT420 has cooling capacity of 2.0 W at 4.2 K
Cryocooler-Based Cooling

- Nb$_3$Sn-coated 650 MHz single cell cavity reaches gradient >6 MV/m with a single cryocooler
- No liquid helium – conduction cooling only

See talk by R. Dhuley in next session

Coating Practical Accelerator Structures

- After our good performance, we decided to try coating 9-cell cavities: cavity type widely applied in accelerators such as European XFEL and LCLS-II.

Set-up of a 9-cell ILC cavity in Fermilab coating furnace (two tin sources)
Coating Practical Accelerator Structures

9-cell Cavity TB9ACC014
After Coating
Coating Practical Accelerator Structures

Nb$_3$Sn-coated 9-cell cavities TB9ACC014 and TB9AES005

Includes correction for stainless steel flanges 2x0.8 nΩ
Nb₃Sn SRF R&D – Studying Microstructure & Growth

Anomalously Large Thin Grains & Performance Degradation [collab with Cornell U.]

Correlation of Orientation Relationships & Thin Grains

Model for Growth of Anomalously Large Thin Grains, Why High Sn Flux Helps Prevent Their Growth

Segregation of Sn in GBs Observed in Early Fermilab Coatings, but not in High Performing Cavities

J. Lee et al. *Acta Materialia* 188 (2020)
Acknowledgements

• Sincere thanks to DOE for supporting this research, including through an Early Career Award
• Thanks to the dedicated efforts of the SRF processing team at FNAL and ANL, the FNAL VTS testing team, and the FNAL machine shop and welding experts
• Electron microscopy was carried out at Northwestern University by Jae-Yel Lee under the supervision of David Seidman, using the NUANCE facilities (supported by the NSF, the Keck Foundation, and the State of Illinois)
• Many thanks for useful discussions with many colleagues