

Science and Technology Facilities Council

PVD Deposition Of Nb₃Sn From An Alloy Target On Copper

Reza Valizadeh on behalf of the team

Nb₃Sn Workshop 9th - 13th November 2020 Cornell University

MOTIVATION

Bulk niobium (Nb) has been for the past three decades: the material of choice for SRF applications:

- ➢It has the highest Tc (9.25K) for pure metal
- > It has highest lower magnetic field H_{c1}
- Easy fabrication

But it has achieved the magnetic field limitation so further improvement of cavity RF performance dictate to turn to other superconducting materials.

- Nb₃Sn alloy is type II superconductor with ideal Tc of 18 K and superheating field of 400 mT. Hence can offer improvement
 - Cryogenic efficiency
 - > Higher accelerating field.
 - \succ Recently there has been positive progress in producing Nb cavities with Nb₃Sn coating.
- □ The material can be deposited as thin film either in:
 - ➢Single layer (Nb₃Sn on Cu or Nb)
 - Double layer (Nb /Nb₃Sn on Cu)
 - >Multilayer (SIS): Nb /Insulator/ Nb₃Sn, on Cu

Nb₃Sn unit cell Structure

- The Sn atoms forms a bcc lattice and each cube face is bisected by orthogonal Nb chains.
- In bcc Nb the shortest distance between the atoms is 0.286 nm starting from a lattice parameters of a = 0.330 nm
- In Nb3SN the lattice parameters of about a = 0.529 nm for stoichiometric composition and the distance between the Nb atoms is 0.265 nm
- The reduction of distance between the Nb chains is responsible for the high Tc in comparison to bcc Nb.
- Sn deficiency may cause the Nb to occupy the site and effect the long range order

Nb₃Sn binary phase diagram

- Intermetallic niobium–tin is based on the superconductor Nb, which exists in a bcc Nb structure or a metastable Nb₃Nb A15 structure
- When alloyed with Sn and in thermodynamic equilibrium, it can form either Nb1-βSnβ (about 0.18≤β≤0.25) or the line compounds Nb6Sn5 and NbSn2.
- Both the line compounds at β = 0.45 and 0.67 are superconducting, with
 Tc<2.8 K for Nb6Sn5
 Tc<2.68 K for NbSn2

Nb₃Sn deposition system and parameters

Magnetron sputtering from a RRR 300 Nb target □Substrate Temperature, Deposition Rate, Deposition Thickness, Substrate Bias, Concurrent Ion Bombardment can be varied independently.

□Substrates are loaded into the load lock and system fully Baked.

□Base pressure 2 x 10⁻⁹ mbar is routinely achieved

Nb deposition:

- 400 W, 470v, 0.85A
- 4 hours deposition
- DC sputtering

Nb3Sn deposition:

- 200 W, 489 V, 0.41 A
- 2 Hours deposition
- DC sputtering

Cu/Nb₃Sn deposition (single layer) at various Temperature

- Nb₃Sn were deposited on copper with no prior chemical cleaning such (EP or SUBU5) at various Temperature of RT, 450°C and 600°C. The RT deposition showed no sign of superconductivity.
- Best performance in terms of superconducting properties is achieved by the film deposited at 600°C (A15-6) with a Tc of 15.7 K, a lattice parameters of 0.529 nm and grain size in order of 8 to10 nm.
- The film deposited at moderate temperature of 450°C was superconducting but its performance is much reduced with Tc of 14.6 K
- The film deposited at room temperature and then post annealed at 650°C (A15-9) has the worst performance since M/Mi drop sharply at very low field of about 10 mT.

Cu (EP)LNL / Nb₃Sn (single layer)

- There is some diffusion of copper at the interface
- There is a clear oxide layer at the interface despite high temperature treatment prior deposition (no prior chemical processing)
- There are area that it is Sn deficient.

Layer t (1e15at/cm2) t (nm) r(1e22at/cm3)

1489.817 5.106

7606.631

The Tc was determined to be between 17.75K (on sapphire) and 17.5 on copper

Nb

75.0000

Sn

25.0000

0

0.0000 0.0000

AL

First B_{en} estimated to be 50mT and 140mT deposited on Cu and Sapphire.

Cu /Nb/Nb₃Sn (double layer)

- □ The interfaces both at Cu/Nb and Nb/Nb3Sn is well define
- Nb layer is grown is large grain and in a perpendicular direction to the substrate surface
- No intermixing of elements is observed
- Some area of Sn deficiency and rich Sn in Nb3Sn layer can be observed
- First B_{en} is estimated at 95mT.

Cu/Nb/Nb₃Sn (double layer)

Two distinct area can be observed:

- Perfect area with sharp interface with correct stoichiometry for Nb3Sn layer
- Copper diffusion from the interface to top surface.
- Nb and Nb₃Sn layers are completely intermixed and there is a substantial volume of copper substrate is present throughout the depth of the layer and at the surface
- □ Inside the cavity there are trace silicon and aluminium oxide.

SIS Structure of thick Nb₃Sn/AIN/Nb multilayer on copper

- Although the layers are well identified however there is again some degree of mixing can be observed.
- 1. Sn segregation at Cu/Nb interface
- 2. Nb₃Sn into Nb layer below the AlN layer at some places
- 3. Copper diffusion on to the surface
- 4. Some level of Nitrogen diffusion into all the layers.
- 5. The B_{en} in parallel external field is estimated to be 61mT and 4mT for Cu and Sapphire Substrate

SIS Structure of thin layer (Nb₃Sn/AIN)₂/Nb multilayer on Cu

- The observed distortion of the Nb₃Sn / AIN bilayer is most probably due to mechanical polishing prior to ion beam milling, since such distortion is not present in the RBS spectra
- ❑ The RBS analysis predicts stoichiometric layers with the second AIN layer almost being double the thickness of the first AIN layer. Similarly the first Nb₃Sn layer is 25% thicker than the second Nb₃Sn layer.

SIS Structure of thin layer (Nb₃Sn/AIN)₂/Nb multilayer on Cu

The B_{en} in parallel external field is estimated to be 108 mT and 130 mT for Cu and Sapphire Substrate
 There is nearly no hysteresis in the thin double SIS structure

□ This can be due to the protective effect of multilayers which reduces the sensitivity to pinning effect.

Summary

- □ Nb₃Sn can be successfully deposited from an alloy target with satisfactory SC properties when it is deposited at high temperature (around 600-650 °C).
- Final Smooth surfaces and sharp interface between layers can be achieved by suitable surface preparation method/process of substrate
- Impurities such as silicon oxide may cause complex defects to be formed when Nb3Sn is deposited in multilayer structure.
- Substrate preparation can influence the growth of the film and hence its SC properties
- Protective effect of multilayers to some extend is been shown:
 - Less sensitivity to pinning defects
 - Multilayer structure even without insulating layer reduced the hysteresis loop
 - Defects are still present in individual layers
 - Not detected anymore when SIS structure fully SC.

Complementary non-destructive technique such as RBS proved to be a powerful technique to distinguish post sample preparation damage.

Special Thanks to all the team member STFC

≻Adrain Hannah ➢Gavin Stenning ≻Daniel Turner Yukari Dan (Hitachi) ≻Karl Dawson >Spideh Aliasghari ≻Stuart Wilde ➢Oleg Malyshev Tobias Junginger ➢Graeme Burt ➢Vinod Dannak

University of Siegen

➢ Michael Vogel Stewart Leith

IEE

≻Eugen Seiler ➢Rastislav Ries

INFN

➢Cristian Pira Eduard Chyhyrynets

CEA

> C.Z Antoine

JLAB

Anne Marie Valente

HZB

- > O. Kugeler
- D.Tikhonov
- RTU
- A Medvid

Science and Technology Facilities Council

Than Kyou

Science and Technology Facilities Council

@STFC_matters

Science and Technology Facilities Council