
Accelerator Stewardship with Nb₃Sn at JLab

Virtual International Workshop on Nb₃Sn SRF Science, Technology, and Applications November 10th – 13th, 2020

Gianluigi Ciovati

Thursday, November 12, 2020

Conduction cooled SRF cavity at JLab

Acknowledgments

JLab: R. Rimmer, G. Cheng, U. Pudasaini, K. Harding, E. Daly, F. Marhauser, F. Hannon, J. Fischer, Cavity Production Group

Consultants: J. Rathke and T. Schultheiss

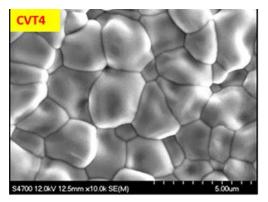
General Atomics: B. Coriton

Key subcontractors:

Concurrent Technologies Corp.: B. Golesich

AJ Tuck Co: A. Tuck, T. Yoho

Absolut system: T. Trollier



SRF technology for industrial accelerators: potential

Gifford-McMahon **cryocooler**, ~2 W at 4 K (<u>shicryogenics.com</u>)

SEM image of Nb₃Sn film on Nb (U. Pudasaini *et al.* 2020 *Supercond. Sci. Technol.* 33 045012)

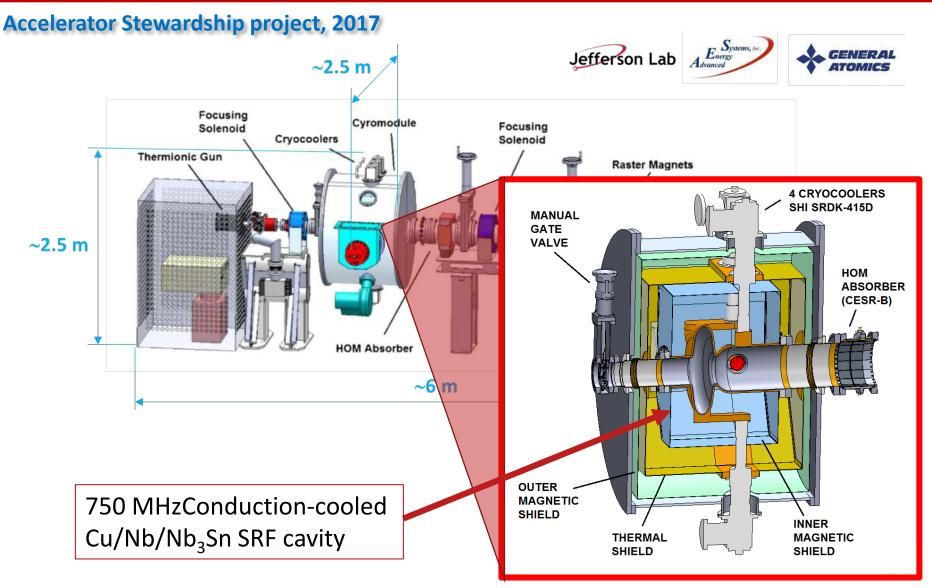
- Improvements in Nb₃Sn thin-film ($T_c = 18.3$ K) make it a viable option for SRF cavities operating at 4 K, rather than 2 K
- Improvements in the cooling capacity of commercial cryocooler make them a viable option to cool SRF cavities

Potential of SRF technology for environmental accelerators

 Because of the higher efficiency, SRF accelerators can result in lower treatment cost

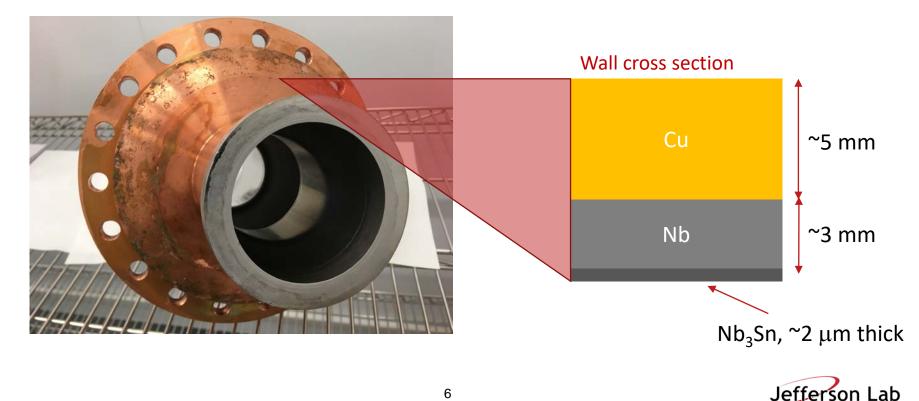
Workshop on Energy and Environmental Applications of E&E applications:

Table 2. Target performance for high power electron accelerators for E&E applications:

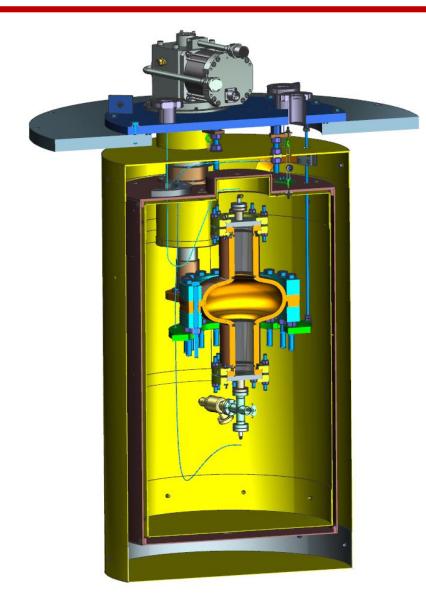

	Type 1 Demo/Small Scale	Type 2 Medium Scale Low	Type 3 Medium Scale High Energy	Type 4 Large Scale High Energy	
Example Applications	R&D, Sterilization, industrial	Energy Flue Gas, Waste water	Wastewater, sludge, medical waste	Sludge, Medical waste, Env. remediation	
Electron Beam Energy Electron Beam	effluent streams 0.5-1.5 MeV >0.5 MW	1-2 MeV >1 MW	10 MeV >1 MW	10 MeV >10 MW	
Power (CW) Wallplug Efficiency Target Capital	>50% <\$10/W	>50% <\$10/W	>50% <\$10/W	>75% <\$5/W	
Cost* Target Operating Cost†	<1.0M\$/yr	<1.5M\$/yr	<1.5M\$/yr	<12M\$/yr	

eleratorsamerica.org)

Conceptual design of a 1 MeV, 1 MW SRF accelerator for e-beam irradiation



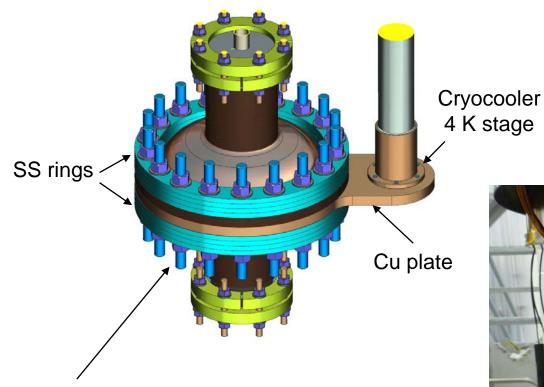
G. Ciovati et al., Phys. Rev. Accel. Beams 21, 091601 (2018)



JLab R&D funding, 2018-2020

- 1.5 GHz Nb single-cell cavity coated with Nb₃Sn
- Deposit thick Cu outer shell for good thermal conduction
- Minimize number of joints between the 4 K stage of cryocooler and the cavity

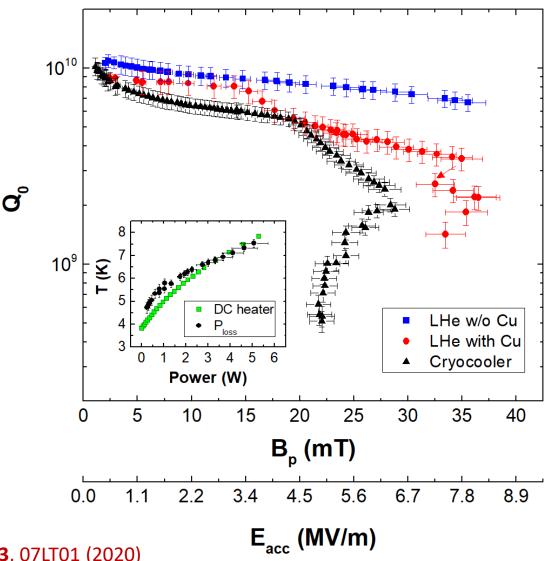
Test stand design



- 2-layers magnetic shielding
- Cu thermal shield anchored to 1st stage
- 3 cryogenic flux gate magnetometer probes
- 16 Cernox thermometers
- 2 low-loss RF cables
- Gifford-McMahon Cryocooler (2 W at 4 K)

Cryocooler connection

1/2" SS rods, silicon-bronze nuts


- torque = 115 N*m
- estimated contact pressure ~46 MPa
- Apiezon N grease between joint

RF test results

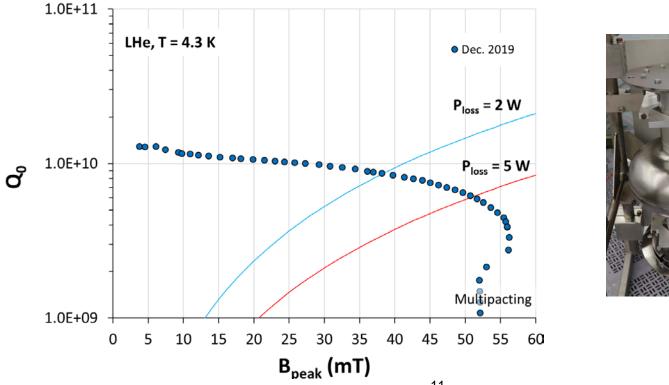
- Cavity temperature after cooldown: ~3.8 K
- T-gradient at 18 K: ~0.09 K/cm
- Max residual B at 18 K: ~14 mG
- Amplitude of microphonics at B_p = 10 mT: 13.8 Hz pk-to-pk
- The cavity was thermally stable during a 1 h operation at P_{diss} = 5 W even with anomalous losses (Q₀ ~ 5e8 at 22 mT)

G. Ciovati et al., Supercond. Sci. Technol. 33, 07LT01 (2020)

Development of conduction cooled cavity capable of 1 MeV

Accelerator Stewardship project, 2019-2022

• The 1 MeV, 1 MW accelerator has been re-designed at 915 MHz (industrial magnetron frequency)



E-B fields of 915 MHz, $\beta = 0.53$ cavity for 1 MeV: $E_{acc} = 7.5 MV/m$ $E_p = 30 MV/m$ $B_p = 45 mT$

Towards a proof-of-concept on a 952 MHz single-cell cavity

- The available funding was not sufficient for fabricating the prototype low-beta 915 MHz cavity
- We use an existing β =1, 952 MHz originally intended as a prototype for EIC (F. Marhauser)
- The 952 MHz cavity was coated by Nb₃Sn at JLab (U. Pudasaini)

Towards a proof-of-concept on a 952 MHz single-cell cavity

- The outer surface has been coated with a ~120 μm thick Cu layer by cold spray

- A 5 mm thick Cu layer will be grown by electroplating
- The cavity will be re-tested in LHe at JLab
- A horizontal cryostat with 3 cryocoolers is being designed and will be assembled with the cavity at General Atomics for the RF test of the conduction-cooled cavity

Summary and outlook

- We have designed an SRF industrial accelerator for environmental remediation, based on a conduction-cooled Nb₃Sn SRF cavity
- We have developed a 1.5 GHz multi-metallic Cu/Nb/Nb₃Sn single-cell cavity and operated it with a commercial cryocooler up to B_p ~ 29 mT (E_{acc} ~ 6.5 MV/m), limited by defects in the Nb₃Sn film.
- We are applying the multi-metallic cavity technology to a 952 MHz single-cell cavity which will be tested in a horizontal cryostat at an industrial partner, aiming for operation at 45 mT

