- Hayato Ito, Hitoshi Hayano, Hideaki Monjushiro KEK Akihiro Kikuchi - NIMS
- Shigeru Kashiwagi, Fuminori Honda Tohoku University
- - Emanuela Barzi FNAL
 - 12/Nov./2020 Nb₃SnSRF'20

Outline

- What advantage of electroplating method for the Nb₃Sn cavity
- Electroplating process at KEK
- Forming the Nb₃Sn layer
- Removing the bronze layer remained after heat treatment
- SEM observation and T_c measurement results
- Summary

Nb₃Sn forming process

Hayato Ito, 12/Nov./2020 Nb₃SnSRF'20

Process	Chemicals	Concentrat
Alkaline degreasing	Ace Clean 801	50 g
↓ Rinsing		
Electrolytic degreasing	NaOH	50 g
Electrolytic degreasing	Top Cleaner E	50 ml
↓ Rinsing		
Etching	Etchant TI	100 ml
↓ Rinsing	_	
Desmut	35%-HCI	100 ml
↓ Rinsing	-	
	Top Soft Copper M	500 ml
Strike conner plating	Top Soft Copper 3	20 ml
	Top Soft Copper S	50 g
↓ Rinsing		
	Stannous Sulfate	30 g
Acidic tin plating	98%-H ₂ SO ₄	185 g
	Top Floona Mu	20 ml
	Top Floona R	8 ml
↓ Rinsing		
Copper pyrophosphate plating	RAIKI Copper pyrophosphate solution	200 ml

	l	J		
and a second sec			A CONTRACT OF	and the second s
		A little		

	Process	Chemicals	Concentrat
ſ	Alkaline degreasing	Ace Clean 801	50 g
I	↓ Rinsing		
	Electrolytic degreasing	NaOH Top Cleaner E	50 g 50 ml
I	↓ Rinsing	-	
I	Etching	Etchant TI	100 ml
I	↓ Rinsing	_	
I	Desmut	35%-HCI	100 ml
	↓ Rinsing Pre-	treatment for plating	
	Strike copper plating	Top Soft Copper 3 Top Soft Copper S	500 ml 20 ml 50 g
	↓ Rinsing	_	
	Acidic tin plating	Stannous Sulfate 98%-H ₂ SO ₄ Top Floona Mu Top Floona R	30 g 185 g 20 ml 8 ml
	↓ Rinsing	_	
	Copper pyrophosphate plating	RAIKI Copper pyrophosphate solution	200 ml

Heat treatment to form Nb₃Sn

Hayato Ito, 12/Nov./2020 Nb₃SnSRF'20

•214°C for 72 h

->Relieve the stress on the plating layer. The diffusion reaction between Sn and Cu starts.

•458°C for 10 h

->The Sn layer is liquefied.

The diffusion reaction between Nb and Cu starts.

•700°C for 24 h

->Nb₃Sn layer is formed.

After Heat treatment

The bronze layer remained on the sample surface.

Removing bronze layer

	FNAI	.'s sa	mpl
1			

Hayato Ito,	12/Nov.,	/2020	Nb ₃ SnS
-------------	----------	-------	---------------------

Chemical Solution	Reactivity
$HNO_3: H_2O = 1: 1$	No
HNO ₃ : $H_2O = 30: 5$ (at 60°C)	No
HCI	No
HCI: $H_2O_2 = 1: 1$	No
BCP (HNO ₃ : HF: $H_3PO_4 = 1: 1: 1$)	O.K. ←
Aqua regia (HCl: $HNO_3 = 3: 1$)	О.К.

SRF'20

Aqua regia treatment

Hayato Ito, 12/Nov./2020 Nb₃SnSRF'20

Aqua regia (HCI: $HNO_3 = 3: 1$) treatment was applied to KEK's samples.

Processing time	Sample weight
0.5 h	4.5357 g
1 h	4.5355 g
3 h	4.5355 g

The bronze layer was removed by aqua regia treatment process for 30 min.

Aqua regia treatment

-> Nb₃Sn is stable to aqua regia at room temperature. -> Only the bronze layer could be removed by aqua regia treatment.

- There was no change in the weight of the samples after over 1 h of treatment with aqua regia and no change in the appearance of the Nb₃Sn surface by SEM observation.

Nb₃Sn Formation Using Electroplating Method for SRF Cavity

12

SEM observation

2019/07/26 13:42 AL D7.8 x1.0k 100 um

Miniscope1747

2019/12/19 16:07 H D7.8 x1.0k 100 μm

Hayato Ito, 12/Nov./2020 Nb₃SnSRF'20

Sample No.	Nb substarate	Nb₃Sn layer	Note
007a	Nilaco	9.8 +/- 0.8 μm	
010a	Nilaco	5 +/- 2 μm (9 +/- 2 μm)	Bronze layer is remo
014a	Nilaco	11 +/- 2 μm	
016a	Nilaco	11 +/- 1 μm	
018b	TD	10.7 +/- 0.9 μm	

 The Nb₃Sn layer is around 10 µm thick in the sample before removing the bronze layer

 After the removal process, the thickness is 5 μm (9 μm if the fragment on the surface is taken into account)
The Nb₃Sn phase might not be formed at upper side of the Nb₃Sn layer

T_c Measurement

red box.

Hayato Ito, 12/Nov./2020 Nb₃SnSRF'20

For each of the four samples, strips of 3 mm*11 mm were cut out and numbered 1, 2, and 3 from the center, as shown in the

Four samples were measured, 010a, 014a, 016a, and 018b, for a total of 12 T_c measurements.

All the measured samples superconducting transitioned.

T_c Measurement

				Cutout position										
Sample No.	Nb substrate	Seed	Cu	Sn		Brriei	r Cu		1		2		3	
		J	time	J	time	J	time	Тс	width	Тс	width	Тс	width	Average
010a	Nilaco	2 A/dm^2	10 min	4 A/dm^2	7.5 min	4 A/dm^2	15 min	17.5	0.32	17.5	0.43	17.5	0.45	17.5
014a	Nilaco	2 A/dm^2	2.5 min	4 A/dm^2	20 min	4 A/dm^2	15 min	17.1	0.81	17.4	0.43	17.5	0.35	17.3
016a	Nilaco	2 A/dm^2	5 min	4 A/dm^2	7.5 min	4 A/dm^2	10 min	16.5	1.2	16.7	1.4	17	1.1	16.7
018b	TD	2 A/dm^2	2.5 min	4 A/dm^2	7.5 min	4 A/dm^2	10 min	16.7	1	16.5	1.3	16	0.73	16.4

Hayato Ito, 12/Nov./2020 Nb₃SnSRF'20

- The thicker the seed Cu layer, the higher the $T_{\rm c}$ tends to be. Also, the variation of $T_{\rm c}$ at each position tends to be small
- The transition was observed in the 010a sample which was immersed in aqua regia for 3 hrs to remove the bronze layer

-> Deterioration of Nb₃Sn by the aqua regia process is not expected

15

Summary

- wire and performed a test of Nb₃Sn formation using the electroplating method
- We focused on the bronze route which is widely used in the superconducting Each Cu and Sn layers were plated successfully and uniformly
- Only the bronze layer was successfully removed in the removal test with aqua regia
- The Nb₃Sn layer with a thickness of around 10 μm was confirmed by SEM crosssectional observation
- A T_c measurement using PPMS confirmed a transition temperature of 17.5 K for KEK's sample
- We are planning to test the formation of Nb₃Sn film on a larger area of Nb plates and cylindrical Nb plates

16