

Critical Fields of Nb₃Sn

S. Keckert, T. Junginger, T. Buck, D. Hall, P. Kolb, O. Kugeler, R. Laxdal, M. Liepe, S. Posen, T. Prokscha, Z. Salman, A. Suter and J. Knobloch

Nb₃Sn workshop Cornell 10.11.2020

[Supercond. Sci. Technol. 32, 075004 "Critical fields of Nb₃Sn prepared for superconducting cavities"]

- All substrates: Niobium RRR ≥ 300
- Coatings: $\approx 2\mu m Nb_3 Sn$ by vapor diffusion, Cornell "standard procedure"

Muon Spin Rotation (µSR)

RIUMF

[T. Junginger, R. Laxdal, "Muon Spin Rotation Studies of Niobium and Other SRF Materials", SRF 2019]

- Low-energy μSR @ PSI
- Constant ambient conditions: T = 5K, $\mu_0 H_{ext} = 10$ mT
- Measure local magnetic field as a function of muon implantation depth

[T. Junginger, R. Laxdal, "Muon Spin Rotation Studies of Niobium and Other SRF Materials", SRF 2019]

The Quadrupole Resonator (QPR)

S. Keckert, 10.11.2020

•
$$H_{\rm vp,RF}(T) = H_{\rm vp,RF} \left[1 - \left(\frac{T}{T_{\rm c}} \right)^2 \right]$$

• Single short pulse of RF power \rightarrow sample quenches, RF heating negligible

- 4 labs, 3 measurement setups
- 3 samples with comparable substrates and coatings
- $H_{\rm vp,DC}$ is consistent with $H_{\rm c1}$
- $H_{\mathrm{vp},RF} \gg H_{c1}$

→ Metastability for RF fields

 \rightarrow Still well below $H_{\rm sh}$

λ [nm] LE-μSR, QPR	μ ₀ Η _{c1} [mT] LE-μSR	μ ₀ Η _c [mT] LE-μSR	μ ₀ H _{sh} [mT] LE-μSR	$\mu_0 H_{\mathrm{vp,DC}} [\mathrm{mT}] \ \mu \mathrm{SR}$	$\mu_0 H_{\mathrm{vp,RF}} [\mathrm{mT}]$ QPR
160 ± 4	28 ± 2	600 ± 100	500 ± 120	28 ± 12	200 ± 5

$$\lambda(T) = \frac{\lambda(0 \text{ K})}{\sqrt{1 - (T/T_c)^4}}$$
$$\kappa = \frac{\lambda}{\xi_{GL}} = \frac{2\sqrt{3}}{\pi} \frac{\lambda^2}{\xi_0 \lambda_L}$$
$$\mu_0 H_{c1} = \frac{\Phi_0}{4\pi \lambda^2} \ln(\kappa + 0.5)$$
$$H_c = \frac{\sqrt{2}\kappa H_{c1}}{\ln \kappa}$$

$$H_{sh} = \frac{H_c}{4} \left(\frac{\sqrt{20}}{6} + \frac{0.55}{\kappa} \right)$$

Helmholtz Zentrum Berlin

Quench field measurement: RF heating

RF Characterization of a Nb₃Sn sample

- Tin diffusion coating process at 1100 °C
 - Cornell University, Ithaca, USA
- $\sim 2 \ \mu m$ of Nb₃Sn on entire surface

