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material’s properties since the 1970s
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● act as the primary flux pinning centers
● often exhibit enhanced concentrations of Sn 

or ternary elements like Cu and Ti
● have surprisingly not been studied in detail 

using density-functional theory (DFT)
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(with free energy gains approaching ~0.5 eV or ~4kT at high growing temperatures)
● Local Tc model finds tin-rich GBs to be detrimental to superconductivity while clean 

GBs hardly degrade Tc, explaining the SRF cavity Q-slope data from first principles
Insights: 
Too high of tin chemical potential during Nb3Sn cavity growth will cause excess tin to 
diffuse towards GBs which should be avoided
Speculations: 
ΔN(0) heavily influences properties of Nb3Sn →  inexpensive DFT calculations can help 
predict defect segregation behavior
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