The Center for BRIGHTBBEANS A National Science Foundation Science & Technology Center

First principles study on the impact of grain boundaries on Nb₃Sn

9:30am Tuesday 10 November 2020 Virtual International Workshop on Nb₃Sn SRF Science, Technology & Applications <u>Michelle Kelley</u>, Nathan Sitaraman and Tomás Arias (Cornell University)

Nb₃Sn SRF cavity studies¹ indicate correlation between cavity performance and grain boundary (GB) composition.

[1] Lee et al. (2020) Acta Mat. 188, 1505

Nb₃Sn SRF cavity studies¹ indicate correlation between cavity performance and grain boundary (GB) composition.

Nb₃Sn SRF cavity studies¹ indicate correlation between cavity performance and grain boundary (GB) composition.

Ginzburg-Landau simulations suggest GBs with degraded properties can lower the flux entry field².

[1] Lee et al. (2020) Acta Mat. 188, 1505

Nb₃Sn SRF cavity studies¹ indicate correlation between cavity performance and grain boundary (GB) composition.

[1] Lee et al. (2020) Acta Mat. 188, 1505

0.6 <u>∼</u> 9.4 <u>⇒</u> ٨/٧ -5 0.2 -100.0 10 -100 x/λ 1.0 0.8 0.6 <u>∼</u> ● 0.4 ● у/Л -50.2 -100.0 10 -100 x/λ

С

1.0

0.8

Ginzburg-Landau simulations suggest GBs with degraded properties can lower the flux entry field².

₹ -5

Nb₃Sn SRF cavity studies¹ indicate correlation between cavity performance and grain boundary (GB) composition.

Ginzburg-Landau simulations suggest GBs with degraded properties can lower the flux entry field².

1.0

0.8

0.2

0.0

1.0

0.8

0.0

0.6 <u>~</u> 0.4 <u>⇒</u>

10

10

0.6 <u>∼</u> 0.4 <u>⇒</u>

Nb₃Sn SRF cavity studies¹ indicate correlation between cavity performance and grain boundary (GB) composition.

Ginzburg-Landau simulations suggest GBs with degraded properties can lower the flux entry field².

Grain boundaries in Nb₃Sn:

 have been known to be important to material's properties since the 1970s

Nb₃Sn SRF cavity studies¹ indicate correlation between cavity performance and grain boundary (GB) composition.

(k1)

Ginzburg-Landau simulations suggest GBs with degraded properties can lower the flux entry field².

Grain boundaries in Nb₃Sn:

- have been known to be important to material's properties since the 1970s
- provide dominant mechanism for Sn diffusion
- act as the primary flux pinning centers
- often exhibit enhanced concentrations of Sn or ternary elements like Cu and Ti

Nb₃Sn SRF cavity studies¹ indicate correlation between cavity performance and grain boundary (GB) composition.

(k†)

Ginzburg-Landau simulations suggest GBs with degraded properties can lower the flux entry field².

Grain boundaries in Nb₃Sn:

- have been known to be important to material's properties since the 1970s
- provide dominant mechanism for Sn diffusion
- act as the primary flux pinning centers
- often exhibit enhanced concentrations of Sn or ternary elements like Cu and Ti
- have *surprisingly* not been studied in detail using density-functional theory (DFT)

NSF

A15 Superconductors:

highest Tc from 1954-1986 Nb₃Sn: Tc \approx 18 K

	# atoms	Grain separation (nm)	Grain boundary energy (mJ m ⁻²)	
(110)-tilt (c)	128	2.99	1455	
(112)-tilt	192	2.59	840	
(100)-twist	78	2.64	650	
(110)-twist (b)	288	2.24	1300	
(120)-tilt	160	2.36	1440	

$$k_{\rm B}T_{\rm c} = 1.13E_{\rm D}\exp\left(-1/\left(N(0)V\right)\right)$$

	# atoms	Grain separation (nm)	Grain boundary energy (mJ m ⁻²)
(110)-tilt (c)	128	2.99	1455
(112)-tilt	192	2.59	840
(100)-twist	78	2.64	650
(110)-twist (b)	288	2.24	1300
(120)-tilt	160	2.36	1440

$$k_{\rm B}T_{\rm c} = 1.13E_{\rm D}\exp\left(-1/\left(N(0)V\right)\right)$$

	# atoms	Grain separation (nm)	Grain boundary energy (mJ m ⁻²)
(110)-tilt (c)	128	2.99	1455
(112)-tilt	192	2.59	840
(100)-twist	78	2.64	650
(110)-twist (b)	288	2.24	1300
(120)-tilt	160	2.36	1440

$$k_{\rm B}T_{\rm c} = 1.13E_{\rm D}\exp\left(-1/\left(N(0)V\right)\right)$$

	# atoms	Grain separation (nm)	Grain boundary energy (mJ m ⁻²)
(110)-tilt (c)	128	2.99	1455
(112)-tilt	192	2.59	840
(100)-twist	78	2.64	650
(110)-twist (b)	288	2.24	1300
(120)-tilt	160	2.36	1440

Local DOS vs distance from a "clean" GB

Global reduction in N(0) by > a factor of 2: Tc \approx 18 K \rightarrow Tc <10 K $k_{\rm B}T_{\rm c} = 1.13E_{\rm D}\exp\left(-1/\left(N(0)V\right)\right)$

Stable Q in cavities with clean grain boundaries

What causes tin to segregate towards GBs?

Tin antisite defect study

Conclusions

• Nb₃Sn (& other A15 superconductors) has a sharp peak in N(0) from the Nb d-orbitals \rightarrow Nb₃Sn Tc \approx 18 K sensitive to Δ N(0)

Conclusions

- Nb₃Sn (& other A15 superconductors) has a sharp peak in N(0) from the Nb d-orbitals \rightarrow Nb₃Sn Tc \approx 18 K sensitive to Δ N(0)
- Clean GBs cause N(0) to reduce by > factor of 2, decays to bulk value ~1-1.5nm

Conclusions

- Nb₃Sn (& other A15 superconductors) has a sharp peak in N(0) from the Nb d-orbitals \rightarrow Nb₃Sn Tc \approx 18 K sensitive to Δ N(0)
- Clean GBs cause N(0) to reduce by > factor of 2, decays to bulk value ~1-1.5nm
- Universal trend in defect electronic entropies favoring tin defects to segregate to GBs (with free energy gains approaching ~0.5 eV or ~4kT at high growing temperatures)

- Nb₃Sn (& other A15 superconductors) has a sharp peak in N(0) from the Nb d-orbitals \rightarrow Nb₃Sn Tc \approx 18 K sensitive to Δ N(0)
- Clean GBs cause N(0) to reduce by > factor of 2, decays to bulk value ~1-1.5nm
- Universal trend in defect electronic entropies favoring tin defects to segregate to GBs (with free energy gains approaching ~0.5 eV or ~4kT at high growing temperatures)
- Local Tc model finds tin-rich GBs to be detrimental to superconductivity while clean GBs hardly degrade Tc, explaining the SRF cavity Q-slope data from first principles

- Nb₃Sn (& other A15 superconductors) has a sharp peak in N(0) from the Nb d-orbitals \rightarrow Nb₃Sn Tc \approx 18 K sensitive to Δ N(0)
- Clean GBs cause N(0) to reduce by > factor of 2, decays to bulk value ~1-1.5nm
- Universal trend in defect electronic entropies favoring tin defects to segregate to GBs (with free energy gains approaching ~0.5 eV or ~4kT at high growing temperatures)
- Local Tc model finds tin-rich GBs to be detrimental to superconductivity while clean GBs hardly degrade Tc, explaining the SRF cavity Q-slope data from first principles *Insights:*
- Too high of tin chemical potential during Nb_3Sn cavity growth will cause excess tin to diffuse towards GBs which should be avoided

- Nb₃Sn (& other A15 superconductors) has a sharp peak in N(0) from the Nb d-orbitals \rightarrow Nb₃Sn Tc \approx 18 K sensitive to Δ N(0)
- Clean GBs cause N(0) to reduce by > factor of 2, decays to bulk value ~1-1.5nm
- Universal trend in defect electronic entropies favoring tin defects to segregate to GBs (with free energy gains approaching ~0.5 eV or ~4kT at high growing temperatures)
- Local Tc model finds tin-rich GBs to be detrimental to superconductivity while clean GBs hardly degrade Tc, explaining the SRF cavity Q-slope data from first principles *Insights:*
- Too high of tin chemical potential during Nb₃Sn cavity growth will cause excess tin to diffuse towards GBs which should be avoided
- Speculations:
- $\Delta N(0)$ heavily influences properties of Nb₃Sn \rightarrow inexpensive DFT calculations can help predict defect segregation behavior

Nathan Sitaraman (Cornell) Prof. Tomás Arias (Cornell)

- Ryan Porter, Prof. Matthias Liepe (Cornell)
- Danilo Liarte, Prof. Jim Sethna (Cornell)
- Alden Pack, Prof. Mark Transtrum (BYU)
- Prof. David Muller (Cornell)
- & all of the collaborators in the CBB-SRF theme

Collaborating affiliates:

- Sam Posen (FNAL)
- Jaeyel Lee, Prof. David Seidman (Northwestern)

& a special thanks to Prof. Ritchie Patterson and Joan Curtis

More on this work:

Kelley et al. 2020 Supercond. Sci. Technol. https://doi.org/10.1088/1361-6668/abc8ce

