

Ultra-Low Cost Fabrication for Nb₃Sn SRF Cavities Using Melt Casted Bronze Structures

Ann-Marie Valente-Feliciano (JLAB) and Grigory Eremeev (JLAB/FNAL)

Chris Rey (e2P)

119 Century Park Dr. Tallahassee, FL 32304 www.e2pco.com

11/12/2020

Outline

- DOE Program Motivation & Goals
- Patent Pending Bronze Route (BR) & Internal Tin (IT) Fabrication Process (US 16/268,686)
- 3D Printing of Sand Molds & Melt Casting
- BR Heat Treat Cycle
 - Ex-situ
 - In-situ
- BR Test Results
- Summary

Materials Motivation:	Bronze (89/11)	Nb (99.99)	
• Cost (\$/lb)	3	300	
• UTS (MPa) @ 300 K	255	180	()
• Thermal Conductivity (k) @ 4 K (W-m/K)	10 (brass)	60-70 (RRR> 250)	ā

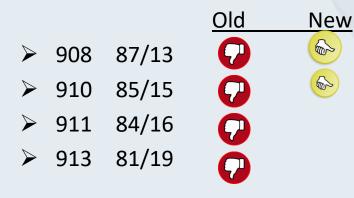
Fabrication Motivation:

- Bronze Route (BR) is simplest/oldest/most reliable of Nb₃Sn fabrication methods
- Single α -phase bronze ~ (Cu 90%/ Sn 10 %)

Our Patent Pending (US 16/268,686) BR Fabrication Process (high level):

- <u>Step 1</u>: Indirect 3D Printing of Bronze Cavity <u>Sand</u>-Molds
- <u>Step 2</u>: Bronze Cast Cavity in Sand Molds
- <u>Step 3</u>: Mechanical/Electrical/Chemical Polishing Interior of Bronze Casted Cavity
- <u>Step 4</u>: Deposit Nb Films w/ ECR (eventually) HIPIMMS on Interior Bronze Casted Substrates/Scaffolds
- <u>Step 5</u>: Post Reaction Heat Treatment to optimize SRF properties
- <u>Step 6</u>: (Optional) Coat Exterior Walls with High Thermal Conductivity Copper (Cu)
- <u>Step 7</u>: Test & Evaluate
- <u>Step 8:</u> Repeat process for RF materials optimization

DC wires optimized for small grains & Vortex Pinning vs. RF cavities optimized for large grains & Meissner State


Energy to **Starting Bronze Ingot Materials**

What was the quality of the starting Bronze ingot material? ... Not Ideal !!!

Commercial Grade: Centrifugally Cast Tin-Bronze:

Cu/Sn Content Trade name Quality 89/11 ▶ 907

R&D Grade: Centrifugally Cast Tin-Bronze

Power Solutions

3D Printed Sand Molds & Melt Casting

رك آ

ε Cη

Cu and Bronze Melt Casting:

- Dates back Milena (2500-800 B.C.)
- Little has changed

Energy to

Power Solutions

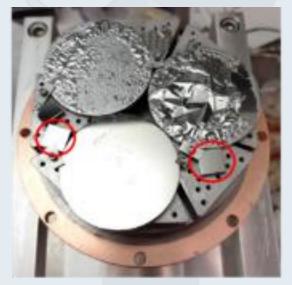
- No lower cost metal fabrication technique !!!
- Complex shapes with detail ~ 1 mm
- Large Objects ... e.g. Liberty Bell
- Cheap & Fast < 1 day


Sand Molds:

- One-time use → Literally dirt cheap!!!
 - ➢ 9-cell SRF: one-off ~ \$500
 - ➢ 9-cell SRF: > 100 ~ \$30
- Modern twist for SBIR: 3D printing
 - Complex shapes: RF couplers etc.
 - Large Objects... 9-cell SRF
 - Rapid prototyping < 3 hours</p>
 - 3D printer: capital investment ~ \$100 k-\$300 k

Mold + Melt Cast 9-cell SRF Cavity (> 100)

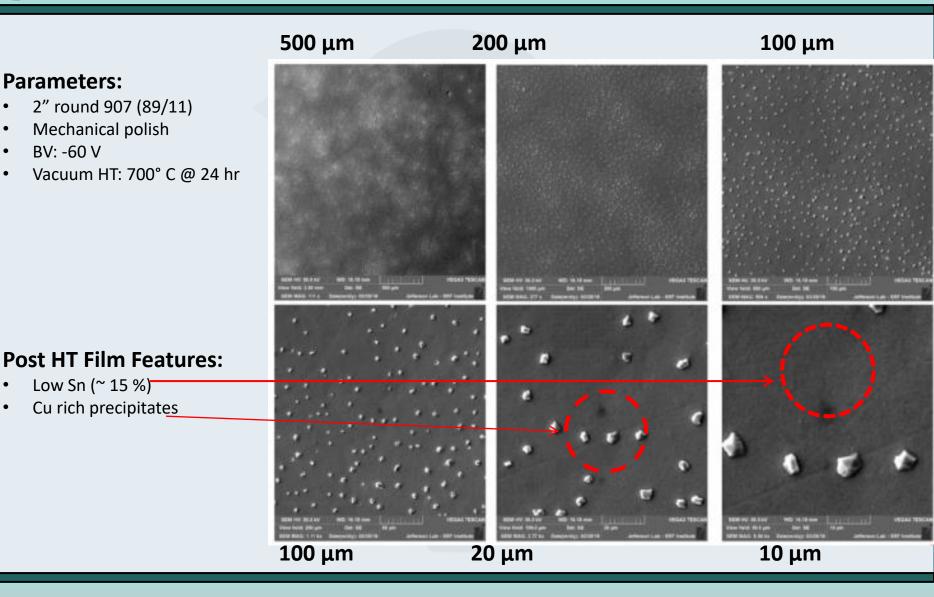
- ~ \$100-\$300/cavity
- < 1 day fab.
- UPS Ground Shipping @ 2 days



ECR Deposition @ JLAB: -60/-120 V, Pre HT

- Three (3) 10x10 & 2" samples deposited simultaneously (no substrate heating)
- 10x10 mm samples same as 2" @ 60 V
- 10 x 10 mm samples different than 2" @ -120 V
- RRR ~ 189 pure Nb film (peeled from 2" sample)

Samples in chamber prior to Nb film deposition



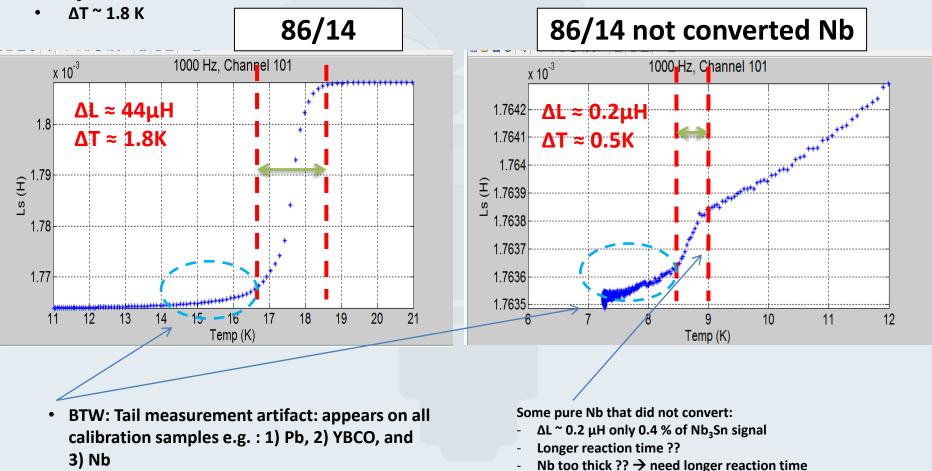
Samples in chamber after Nb film deposition @ -120V

Alternate samples in chamber after Nb film deposition @ -60V

Energy to SEM: 907 (89/11) Post 700° Vacuum Heat treat @ JLAB Solutions

Power

.


AC Inductively Measured T_c

Sample 911 (86 % Cu/ 14 % Sn)

- $\Delta L^{\sim} 44 \ \mu h \rightarrow$ largest signal (surprisingly larger than pure Nb signal)
- T_c onset right @ 17.3 K

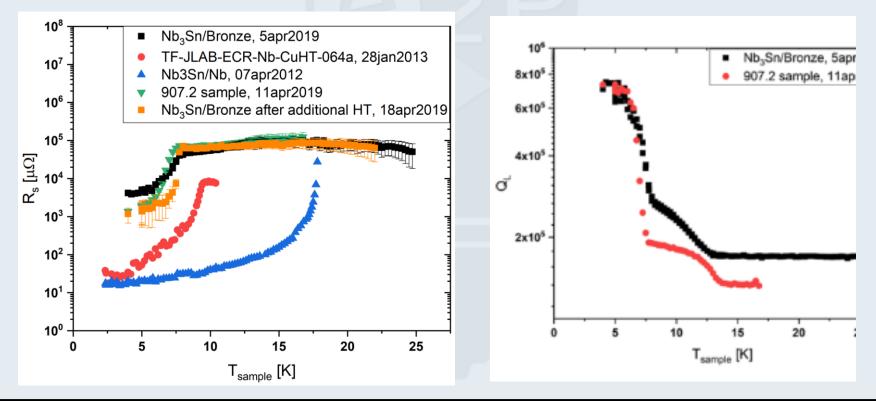
Energy to Power

Solutions

Bronze	Sample Name	Nucleation Voltage (V) / Ion Energy (eV)	Heat Treatment	Soak Temperature (C)	Tc / Transition Width ΔT (K)	Inductive Signal Strength ΔL (μH)
C907 Cu/Sn: 89/11	907-1	-120/184	HT1	700	NA	NA
	907-2	-60/124	HT4	759	14.2/1.3	23 + 7
	907-3	0/64	HT6	798	14.8/1	8
	907-4	-240/304				
C909 Cu/Sn: 87/13	909-1	-120/184	HT1	700	NA	NA
	909-2	-60/124	HT4	759	16.3/1	30 + 7
	909-3	0/64	HT6	798*	16.6/1.3	33 + 10
	909-4	-240/304				
C910 Cu/Sn: 85/15	910-1	-120/184	HT1	700	17.3/0.8	0.35 + 0.2
	910-2	-60/124	HT4	759	17.1/1.3	29 + 7
	910-3	0/64	HT6	798*	15.9/1.6	21 + 10
	910-4	-240/304				
C911 Cu/Sn: 84/16	911-1	-120/184	HT2	700	16.5/1.4	35 + 8
	911-2	-60/124	HT5	700	15.2/1.2	32 + 3
	911-3	0/64	HT7	759	14.8/0.9	17 + 10
	911-4	-240/304				
C913 Cu/Sn: 81/19	913-1	-120/184	HT3	700	15.6/0.9	28 + 15
	913-2	-60/124	HT7	759	14.5/1.7	31+4
	913-3	0/64	HT7	759	15.0/1.4	26+4
	913-4	-240/304				

*Soak temperature seemed to be too hot for these samples: they appeared slightly melted after heat treatment

Power


R_s & Q Measurements on 907 (89/11)

Process conditions:

- 907 (89/11)
- ECR: -60 V
- HT: 700° C for 24 hr
- HT: Vacuum furnace @ JLAB

Test results:

- $T_c \sim 14 \text{ K} \rightarrow \text{off stoichiometric Nb}_3 \text{Sn}$
- $R_s > 10^2 \text{ Nb}_3 \text{Sn JLAB thin film}$

Summary: High Points

- 3D printed sand molds by were quick, easy, low cost
- SRF cavity CAD design → 3D sand mold → Cu-Sn casting < 1 day (e.g. FedEx shipping ~ 2 days, BR Ex-Situ heat treat cycle ~ 10 days)
- 3D molds + Cu-Sn scaffold + casting < 1,000 (1) \rightarrow < 300 (> 100)
- Easily adaptable to small & large other SRF components (e.g. couplers, crab cavities, etc.)
- Easily adaptable to IT process starting w/ Cu melt casted
- Easily adaptable to normal conducting Cu (possibly HPA??) cavities & components

د کہ

٢'n

Energy to Power

Solutions

Summary: Low Points

- Key starting point: commercial grade, well mixed & work hardened bronze (>87/13)
- Melt casted surface very rough ... better mechanical & electro-polishing
- Nb₃Sn reaction diffusion of high quality Nb film deposition (e.g. ECR, HIPIMS) vs. low quality thermal vaporization or low energy sputtering
- "In-situ" heated (> 400°C) substrates vs. "Ex-situ" non-heated (< 200°C) substrates
- Bronze samples need its own DTA/TGA to avoid melting
- Optimize bronze substrate temp vs. deposition & incident ion energy
- Optimize heat treat for given bronze melt
- Need to address thermal strain (ϵ) of Cu-Sn on Nb₃Sn degrading SC properties
- Bulk of technical literature useless ... optimized RF properties ≠ DC properties: Meissner (large grains) ≠ Vortex state (small grains)
- Need to address low thermal conductivity issue in final product