Project X Cavity RF and mechanical design

T. Khabiboulline, FNAL/TD/SRF

TTC meeting on CW-SRF, 2013

Project X Cavity RF and mechanical design

The Project X Linac consist of several types of cavities with different beta

	Stage-I				Stage-II	III	
	HWR	SSR1	SSR2	β _G =0.61	β _G =0.90	β _G =0.90	ILC
Solenoids	8	8	21	0	0	0	0
Quads	0	0	0	6*- 6**	7**	15*	28**
Cavities	8	16	35	36	42	120	224
Freq. MHz	162.5	325	325	650	650	650	1300
Max. gain MV	1.7	2.4	5.0	11.5	17.5	17.5	23.3
Q_0 (10 ¹⁰)	0.5	0.8	1	2	2	2	1
Cryomodules	1	2	7	6	7	15	28
Energy MeV	10.	32.4.	159	488	1000	3000	8000

ProjectX Cavity RF and mechanical design

Sec- tion	Freq. (MHz)	Energy (MeV)	Cav/mag/CM	Gradient (MV/m)	Energy Gain (MeV)	Q ₀ @2K (10 ¹⁰)	CM Config.	CM length (m)
HWR	162.5	2.1-11	8 /8/1	8.2	1.7	0.5	8 x (sc)	5.8
SSR1	325	11-38	16 /8/ 2	10	2.05	0.2	4 x (csc)	5.2
SSR2	325	38-177	35 /21/ 7	11.2	5.32	1.2	sccsccsc	6.5
LB650	650	177-480	30 /20*/ 5	16.5	11.6	1.5	ccc-fd-ccc	7.1
HB650	650	480-1000	42 / 16 ⁺ / 7	17	17.6	2.0	сссссс	9.5
HB650	650	1000- 3000	120 / 30 ⁺ / 15	17	17.6	2.0	сссссссс	11.2

Transit time factor versus the ratio of the beta to the geometric beta, b/b_G , for different number of cells in a cavity, *n*

Complicated beam structure in ProjectX

kaon, and nuclear experiments running in parallel at 3 GeV

The beam current spectrum contains

- Harmonics of the bunch sequence frequency of 10.15 MHz
- Sidebands of the harmonics of 81.25 MHz separated by 1 MHz.

162.5 MHz beam sequence frequency.

Half-Wave Resonator(HWR)

- RF and mechanical design of dressed cavity complete
- Cavity and power coupler under production.

Single Spoke Resonator1(SSR1)

SSR1 Cavity	Design Value	
Frequency	325	MHz
Optimum Beta (b _{OPT})	0.222	
Aperture (diameter)	30	mm
$L_{EFF} = b_{OPT} \lambda$	20.5	cm
R/Q ₀	242	Ω
$G = Q_0 R_S$	84	Ω
E_{max}/E_{acc}	3.84	
B_{max}/E_{acc}	5.81	mT/(MV/m)
Q_0	0.5	1010
Operating temperature	2	K

- 12 (20ld and 10 new) cavities manufactured
- 10 (2 old and 8 new) cavities tested in VTS. Main issue is long time for multipactor processing
- 6 new cavities qualified for dressing
- 1 old cavity dressed, df/dP not optimized
- 1 old cavity tested in HTS (STC) with high Qext coupler (CW) and high power coupler (pulsed)

Dressing of SSR1

1st dressed SSR1 cavity

New design of Helium vessel design goal was reducing df/dP. |df/dP|<10 Hz/mbar is expected

- Transition ring welded to the 1st cavity.
- Frequency shifted by -500 kHz

Single Spoke Resonator2 (SSR2)

X-Y cavity view

Z-Y cavity view

- New design is result of compromise for ProjectX and RISP applications
- RF and mechanical design complete
- Multipactor simulations in progress

Parameter	Value
Frequency	325 MHz
βο	0.514
$L_{\rm eff} = 2*(\beta_0 \lambda/2)$	475. 3 mm
Iris Aperture	50 mm
$E_{\rm nk}/E_{\rm acc}$	3.53
$\dot{B_{pk}}/E_{acc}$	6.25 mT/(MV/m)
G	119 Ω
R/Q	276 Ω
Operating gain / cav	5 MeV
Max Gain / cav	5.32 MeV
Q ₀	>8 x 10 ⁹
df/dp	< 19 Hz/mbar
Operating temp	2 K

Low beta 650 MHz 1-cell cavity

1e9

Multipactor can be processed away

3 JLAB β =0.6 cavities, 100mm iris with, 0 degree

3 FN AL β =0.6 cavities, 86mm iris with, 1.9 degree

High beta 650 MHz 1-cell cavity

- 6 single cell cavities manufactured
- 2 cavities tested in VTS.
- Both tested cavities exceed design gradient and Q0.
- R&D ongoing to find best processing recipe for Q maximization, see A. Grassellino's talk tomorrow

High beta 650 MHz 5-cell cavity

Original design of the dressed cavity optimized for

- High stiffness and mechanical resonances
- Low df/dP.

But in other hand

- Too stiff for room temperature frequency and FFtuning
- Large load to the tuner, cavity stiffness 18 kN/mm

High beta 650 MHz 5-cell cavity tune-ability study

- Stiffening ring radius reduced from 134 mm to 110 mm
- Stresses in stiffening ring during FF tuning reduces 2 times
- Cavity stiffness reduced from 18 kN/mm to 7 kN/mm.

Dressed high beta 650 MHz 5-cell cavity optimization

Dressed high beta 650 MHz 5-cell cavity, new design

New high beta 650 MHz 5-cell cavity

- Process single and 5-cell bare cavities
 - Test in VTS
 - Best high Q recipe found on single cell will be implemented
 - HPR, EP, BCP, Centrifugal Barrel Polishing (Tumbling), heat treatments....etc.
- Continue fabrication of prototypes
 - Lever Tuner
 - Helium vessels
 - Assembly and welding fixtures
- Dress 5-cell cavity
 - VTS tests
 - Room temperature tests
 - Mechanical test of tuner(s)
 - HTS tests
 - Assembly of 6 best cavities in 1st HB cryostat

RF Splitters

The first will split the beam buckets into two equal parts for bunch frequencies of 162.5 MHz. This requires operations at frequencies equal to $(n+1/2) \cdot 162.5$ MHz

The splitter in Stage 2 splits the beam with 81.25 MHz bunch into 3 parts, the frequency of this RF splitter has to be $(n+1/4)\cdot$ 81.25 MHz

Stage	Ι	II
Operating frequency, MHz	406.25	426.5625
Number of cells	2	2
Optimal beta	0.87	0.92
Transverse kick, MeV	7	7
Maximal surface electric field, MV/m	36	37
Maximal surface magnetic field, mT	50.5	52
R/Q*, Ohm	485	510
G-factor, Ohm	115	115
Dimensions, mm ³	270×270×1200	260×260×1150
Aperture, mm	70	65

0.5µsec

- Preliminary RF design is proposed
- Helium vessel and frequency tuner development is planned

3-8 GeV Pulsed Linac cavity

Parameter	Recycler/MI	Direct Injection to MI	Units
Frequency	1.3	1.3	GHz
Loaded Q	1.e7	1.e7	
RF pulse width	7.4	30	ms
Cavity Gradient	25	25	MV/m
Beam current	1	1	mA
Repetition rate	10	10	Hz
Cavity RF power	32	32	kW
Cavity power	50	50	1-W/
+losses+regulation +EOL	50	50	K W
Power per Cryomodule	400	400	kW

- Existing ILC cavity
- Needs new Power Coupler design with higher average power

Summary

- HWR production in ANL in progress
- SSR1 cavities fro 1st cryomodule are manufactured and VTS tests almost complete
- Dressing (new design) of 1st SSR1 cavity in progress
- SSR2 design modified to fit both Project X and RISP
- 2 designs of low beta 650 MHz single cell cavities are manufactured. JLAB design successfully tested in VTS at JLAB and FNAL.
- High beta 650 MHz single cell cavities are manufactured. 2 cavities tested in VTS
- High beta 650 MHz 5-cell (original design) 9 cavities under production. 4 of them will be delivered in June. 6 best will be used for installation in 1st cryomodule. Mechanical design of dressed cavity with lever tuner complete
- New RF design of high beta 650 MHz 5-cell complete and approved for Project X

- 1. What are the design criteria for frequency, #cells, and geometric-beta choices, cell shapes?
 - Bunch repetition frequency choice depend available technology: amplifiers, developed RF system. Accelerating cavity frequency is a harmonic of injector frequency. Odd harmonics used for acceleration of both positively and negatively charged particles.
 - Number of cells defined by available space, field distribution stability, required β range, technology limits.
 - Geometric beta by beam dynamics, power losses, available technology
 - Cell shape by surface field optimization, power loss surface processing technology
- 2. What are the design criteria driven by beam current, emittance, LOM's, HOM's?
 - All modes resulting to additional cryo-loading, emittance grow, beam stability should be damped
- 3. How predictive are HOM calculations?
 - Manufacturing accuracy, difference on (chemical) treatment, tuning requirements
- 4. How predictive are 3D multipacting calculations?
 - Current simulation tools allow to predict with good accuracy multipacting.
 - Quantity is depend on surface preparation
- 5. What determines production tolerances?
 - Forming accuracy 0.1-0.3 mm, weld shrinkage accuracy 0.1-0.2 mm
- 6. What level of mechanical stability (stiffness) is required to operate reliably and to maintain tuneability?
 - Mechanical stability is compromise between desire of higher mechanical resonances and acceptable tune-ability
 - Sensitivity to helium pressure fluctuations df/dP is not necessarily require highest stiffness