Cavity design for KEK-ERL main linac

2013/6/12 TTC topical meeting on CW SRF KEK ERL main linac group K. Umemori, K. Enami, T. Furuya, H. Sakai, M. Sato, K. Shinoe (KEK), M. Sawamura (JAEA-ERL), E. Cenni (Sokendai)

Contents

- Requirement for ERL main linac cavity
- HOM damping
- Surface electric field

- Cavity performance and Field emission

Requirement for ERL main linac cavity

- Maximum Eacc = 15 ~ 20 MV/m
 - Operation: 12~15MV/m
- Q₀ > 1x10¹⁰ at 15 MV/m
 - Lower cryogenic loss is desirable
- <u>CW operation</u>
 - ➤ HOM damping → high current operation
- Cavity design is focused on HOM suppression (designed at 2006)

Suppression of field emission

 3GeV Energy Recovery Linac

 200 main linac SRF cavities

 on straight section

 6-7 GeV XFELO

 From Fenergy Recovery Linac Preliminary Design Report J

HOM Strategy and cavity design

- **Dipole mode:** Lower impedance of (R/Q)Qext/f
- Monopole mode: Avoid frequency around 2.6GHz, 5.2GHz ...
- Quadrupole mode: Eccentric fluted beampipe
- Packing factor: Select 9cell structure

1) Iris diameter 80mm, elliptical shape at equator

2) Large beampipes(φ100/123mm) mounted with RF absorber

Main parameters for the acceleration mode

Frequency	1300 MHz	Coupling	3.8 %
Rsh/Q	897 Ω	Qo x Rs	289 Ω
Ep/Eacc	3.0	Hp/Eacc	42.5 Oe/(MV/m)

Cavity performance and Field emission

Surface electric field of cavity

Effect of large iris diameter HOM suppression ⇔ Large Epeak

- Field emission becomes the cryogenic losses and radiation, which could be problem under CW operation.
- So, it is important to suppress field emission for ERL operation

Vertical test results for #3 and #4 cavities

#3 cav., 2nd VT, Eacc=22MV/m

<u>#4 cav., 2nd VT, Eacc=24MV/m</u>

High power cryomodule test

During conditioning X-ray burst happened.

Si PIN diode around beam axis

Summary and future

- KEK-ERL main linac cavity was designed mainly focused on HOM damping
- At present, field emission is problem
 - Cavity design?
 - Module assembly technique?
- Future direction
 - Improvement of module assembly technique is essential.
 - New cavity design with lower surface E field, but still keeping HOM damping as strong as possible, is desirable.

Discussion

• HOM

- How high frequencies should we calculate/measure HOMs, in order to confirm BBU threshold and HOM heating?
 - ightarrow ~ps beam ightarrow beam spectrum ~1THz
 - Before construct hundreds of cavities(multi GeV ERL), we want to confirm cavity performance.

• Field emission

- How field emission is severe/ or not severe for ERL operation?
 - ➢ Radiation safety
 - Cryogenic loss
 - ➢ Really run inside cavities up to ~GeV?
- How is the situation of field emissions for running CW SRF facilities?
- During operation, what's happen?
 - ➤ Gradually degraded?
 - ➢ Processed?

Backup slide

Dependence of number of cells

Study for TESLA + large beampipe
 Impedance becomes half for 7-cell cavity

			9 cell			7 cell	
		Rsh/Q	Q	Rsh	Rsh/Q	Q	Rsh
TM011	π/9	159	1730	2.8 × 10 ⁵	156	868	1.3×10 ⁵
TM012	8π/9	46	118000	5.4 × 10 ⁶	33	44500	1.5×10 ⁶
		Rt/Q	Q	Rt	Rt/Q	Q	Rt
TM110	5π/9	9	10700	9.4×10^4	7	8000	5.8×10^4
TE-iris		23	4256	9.6×10^4	17	2100	3.6×10^4

Study on iris diameter

	TM010	TE-iris		TM110			
	Rsh/Q	Rt/Q	Qext	Rt/Q*Q/f	Rt/Q	Qext	Rt/Q*Q/f
70phi	1010	22	9500	80000	9	10000	49000
80phi	890	11	4000	18000	6	7600	24000
90phi	780	5	4600	13000	4	7000	13000
100phi	690	3	1000	1000	4	9700	24000

- Condition of study
 - Equator shape is same with TESLA cavity
 - Large beampipe of ϕ 118 is used.
 - Both end cells are symmetric.
- Generally, dipole modes are efficiently damped.

Compact ERL(cERL) project

Demonstrate the technologies needed for future multi-GeV class ERL, and show its beam performances

Parameters of the Compact ERL

	Parameters
Beam energy	<mark>35</mark> - 200 MeV
Injection energy	5 MeV
Average current	<mark>10</mark> - 100 mA
Acc. gradient (main linac)	15 MV/m
Normalized emittance	0.1 - 1 mm·mrad
Bunch length (rms)	1 - 3 ps (usual) ~ 100 fs (with B.C.)
RF frequency	1.3 GHz
V waal waxwaala awa	

☆ red numbers are parameters for initial stage

Clean Room

Work Space

cERL main linac cryomodule

Module assembly

He jackets were welded on cavities

Cavities, HOM dampers and input couplers were assembled.

Installed into cryomodule. Gate valves were mounted on both sides.

Assemble He line, magnetic shield, sensors and so on

Field emission calculation

^{30kWIOT} High power test of cERL main linac cryomodule

Dynamic loss measurement

Q values are dropped due to field emission. Cryogenic loss also increase.