CEBAF waveguide absorbers

R. Rimmer for JLab SRF Institute

Outline

- Original CEBAF HOM absorbers
- Modified CEBAF loads for FEL
- New materials for replacement loads
- High-power loads for next generation FELs
- Other applications
- Conclusions

CEBAF WG dampers

- Original 5-cell cavity has two HOM waveguides and a stub on the opposite end to the FPC
- FPC also provides some useful damping
 - External waveguide filters absorb HOM power (as well as harmonics from the klystron)
- 2K ceramic loads in vacuum, cooled by LHe

Original CEBAF HOM loads

- Broad-band ceramic absorbers in vacuum (no RF window)
- HOM loads cooled by 2K helium
 - Very low dissipated power at CEBAF current
- "special" glassy-carbon loaded ceramic
 - Only produced by one vendor
 - Variability in properties from batch to batch
 - No longer in production
- Brazing issues resulted in several design iterations
 - Final design included a mechanical constraint but ultimately has been very reliable

Modified CEBAF loads for 10 mA

- Designed for use in JLab FEL demo
- Same waveguide and absorber configuration
- However ceramic loads isolated from helium, heat stationed to shield temperature
- Attempts to measure HOM heat still below detectable limits

New materials for 2K loads

- Study by Frank Marhauser [PAC09] identified several candidate materials having losses at 2K
- One candidate material is a graphite loaded SiC
- VTA measurements confirmed RF response
 RF shape adapted because of different properties
- Brazing and cryogenic tests are being planned
- Needed in case any HOM loads are damaged in future C50 rework program or for other applications

Cold measurement of new materials

• Special waveguide test insert allows cryogenic RF measurements of test loads and material samples

Example: Reflection response of different AlN-based composites measured at room temperature (r.t.) and 2 K, compared to original CEBAF load.

Test setup in the vertical Dewar (left), CEBAF absorber (top right) and two different wedge absorber assemblies (bottom right) made of ceramic AINbased composites.

High power loads for ERL/FEL's and rings

- High current ERL and storage ring cavities may generate kW's of HOM power
- Power must be transported to higher temperature for dissipation (shield or room temperature)
- Waveguides offer natural rejection of fundamental mode (no notch filter required)
- Can handle very high HOM power
- N.b.: beam pipe dampers are waveguides too
- Waveguides can exit sideways to save space.

JLab "high-current" cryomodule

- Was an R&D project for next generation ERL/FEL
- Goal of >100 mA at 1.5 GHz (>1A at 750 MHz)
 - Very strong HOM damping required
 - Potentially high HOM power to be extracted
- Waveguide FPC and HOM dampers
- ~100 kW CW max (injector) ~10 kW (ERL)
- Cavities and windows prototyped
- HOM load concept developed
- Module concept developed
- Funding withdrawn 🟵
- Some parts may be used in a new FEL booster module

JLAB HC Cryomodule concept

High-current cavity developed for high-power ERL/FELs HC optimized cell shape, 5-7 cells, WG FPC, WG HOMs

Conceptual design of a cavity-pair injector cryomodule (L=2.6m)

F. Marhauser ERL09

JLab 1.5 GHz high-current cavities

- Two 1.5 GHz 5-cell prototypes built and tested
 - Results exceed requirements
 - High power RF window demonstrated to > 60 kW CW
- May be used for new FEL booster module?

1.5 GHz ERL cavity

1.5 GHz window

HOM load

High-current cavity test results

1.5 GHz 750 MHz 1E+11 1E+11 Test #4 T = 2KTTT **ര്** 1E+10 o 1E+10 Design goal 1E+09 + 1E+09 15 20 25 0 5 10 30 35 15 0 5 10 20 25 30 E_{acc} (MV/m) E_{acc} (MV/m) 1.0E+11 1.E+11 1.0E+10 **8** 1.E+10 ര് Goal Quench Power limited limited 1.0E+09 • 1.93 K 1.E+09 10 15 20 25 5 0 E (MV/m) 1.0E+08 15 0 5 10 20 25 Multipacting seen from low gradient but processed away E_{acc} [MV/m]

High power loads for ERL/FEL's

ANSYS RF-thermal coupled simulation (750 MHz cavity load, 1A beam, ~4kW/load)

Freq. GHz	Input Power, W	Dielectric Loss, W	Surface loss, W	Total power loss, W
1.497	1775.200	1764.876	7.7799	1772.6557
2.994	1923.921	1909.972	8.6038	1918.5754
4.5	150.700	149.195	0.8314	150.0267
6	150.179	148.113	1.0018	149.1147
Sum	4000	3972.156	18.217	3990.372

 $\Delta T_{max} = 62.3 K$

NOV 16 2006 21:20:09 NODAL SOLUTIO STEP=1 SUE =1 TIME=1 TIME=1 TEMP (AVG RSTS=0 PowerGraphic: EFACET=1

H. Wang, G. Cheng

Original 10 kW PEP-II load

Beam excitation depending on operation modes

See JLAB TN-05-047

Other applications

- High-current ANL SPX cavity requires very strong HOM damping
 - Y end group scaled from JLab high current cavity
 - Warm in vacuum HOMs
- SPX cavity LOM can have even more power
 - ~kW power but limited bandwidth
 - Exit via double window to room temperature external load
- LOM damper uses experimental "on-cell" waveguide damper
- Proposing to use waveguides for MEIC storage ring cavities HOM damping
- New booster module for JLab FEL injector
- Being considered for Berlin-Pro ERL

ANL SPX crab cavity development

- SPX upgrade project to produce short X-ray pulses at the APS
 - Crab the beam through an insertion device (and un-crab afterwards)
 - Select fraction of radiation with a slit
- JLab developing compact deflecting system
 - SRF crab cavities with HOM/LOM damping
 - Fully integrated cryomodule package
- Waveguide FPC, LOM and HOM's

MEIC R&D

- New SRF Complex for ion acceleration
- Low frequency RF for ion ring ramping
- High frequency RF for Ion bunching and storage
- High-current, high-frequency electron storage ring*
- Crab cavities for high-luminosity collisions

cavity concept (single cell with waveguide dampers)

JLab FEL new booster (proposed)

- Up to 20 mA
- Low emittance (new DC gun)
- High-power couplers
- Two low- β 750 MHz single cells upstream
- High current β =1 1.5 GHz 5-cell with waveguide dampers

Conclusions

- Waveguide HOMs have several advantages
- Natural high-pass filter to reject fundamental Mode
- High power handling capability
- Static load small compared to CW cavity losses
- Simple to make (stamping, welding)
- Can transport HOM power to higher temperature for dissipation
- Can exit the beamline transversely to save space
- May be used "on cell" for extreme HOM damping?