Beampipe HOM absorber development for KEK-ERL main linac

2013/6/13 TTC topical meeting on CW SRF KEK ERL main linac group K. Umemori, K. Enami, T. Furuya, H. Sakai, M. Sato, K. Shinoe (KEK), M. Sawamura (JAEA-ERL), E. Cenni (Sokendai)

<u>Contents</u>

- Introduction
- Low temperature RF characteristics
- HIP condition
- Cooling test results
- Thermal cycle tests
- HOM measurement at RT
- HOM measurement at cryomodule
- Summary

HOM absorber

- HOM absorber located on 80K region
- Heat load of 150W/cavity is estimated for 100 + 100mA electron beam with 3ps bunch length
- New IB004 ferrite is HIP bonded on Cu pipe
 - Original IB004 is used for KEKB HOM absorber
- Outside: bellows, Inside: Comb-type RF bridge

Low temperature RF characteristics of absorbers

Low temperature measurement of RF absorber's characteristics

- RF absorber should work at 80K
- Temperature dependence was measured while cooling with refrigerator

Good absorption at low temperature

Condition search of HIP process

810°C x 1500atm

910°C x 1500atm

860°C x 1500atm

Cooling test at vacuum chamber

- 4 blade lines between liquid N2 tank and HOM absorber model
- Cross section 100mm² Length 200mm
- HOM absorber model is supported by Teflon bars

Heater test

Heater is placed on inside damper model, and simulate heat load

		0 W	38.5 W
	Both end of blade line	2.4	40.8
	Blade line and Cu plate	0.0	4.1
	Both sides of Cu plate	0.1	8.1
	Cu plate and 80K anchor	0.0	2.9
	80K anchor and ferrite	0.6	0.9

These measured data were used for thermal design of cERL cryomodule.

Effect of contact (Comb structure)

- contact longitudinally
- contact with tilt condition

<u>Thermal cycle test of</u> <u>HIP ferrite model</u>

- Thermal cycle pattern
 - RT \rightarrow 80K 3days (22min/K)
 - 80K keep 1days
 - 80K \rightarrow RT 3days
- Observe ferrite surface

Observed cracks on ferrite surface

- Some cracks were observed, especially at taper part of ferrite
- Thickness of taper part changed from 1mm to 2mm.
 - \rightarrow taper structure was changed
- Cracks appear at first or second cycles, seem not to grow much during further thermal cycles

HOM measurement at RT (using prototype with ferrite)

Mounted on LBP side of #2 cavity, and measured at room temperature
HOMs are sufficiently damped.

Cryomodule HOM measurement

- Using fundamental pickup port (PU) and HOM ports (HOM1, 2, 3), HOM characteristics were measured.
- Their behavior, frequency and loaded Q-values, were generally agreed with calculation results.

<u>Summary</u>

- Beampipe HOM absorbers have been developed for KEK-ERL
- Ferrite is HIPped on Cu beampipe
- Cooling tests were performed to understand thermal properties.
- Thermal cycle tests were performed. Some cracks were observed.
- HOM damping properties seem to be good.

Backup slide

HIP ferrite model

• Center part of HOM absorber before manufacturing Comb-type bridge and 80K anchor

Measure against cracks

- Change ferrite thickness
 - $-2mm \rightarrow 3mm$
- Structure of ferrite end
 - Taper \rightarrow Round shape

Compact ERL(cERL) project

Demonstrate the technologies needed for future multi-GeV class ERL, and show its beam performances

Parameters of the Compact ERL

	Parameters				
Beam energy	<mark>35</mark> - 200 MeV				
Injection energy	5 MeV				
Average current	<mark>10</mark> - 100 mA				
Acc. gradient (main linac)	15 MV/m				
Normalized emittance	0.1 - 1 mm·mrad				
Bunch length (rms)	1 - 3 ps (usual) ~ 100 fs (with B.C.)				
RF frequency	1.3 GHz				
V waal waxwaala awa	V red numbers are never store				

☆ red numbers are parameters for initial stage

Clean Room

Work Space

Compact ERL main linac cryomodule

Requirement

Frequency: 1.3 GHz Input power: 20kW CW (SW) Gradient: 15-20MV/m Q0: >1*10^10 Beam current: max 100mA (HOM-BBU対策を施した空洞設計)

2-cavity cryomodule had been developed for cERL main linac

9-cell SRF cavity HOM damped cavity Eacc = 15-20 MV/m Q0 > 1*10^10 @15MV/m

e-

- **HOM damper**
- HIP ferrite on Cu beampipe
- Operation at 80K
- 150W HOM power handling

Frequency Tuner Slide jack tuner piezo tuner **Input coupler**

- 20kW CW(total reflection)
- Cold and warm window
- HA997 ceramic is used
- QL=(1-4)*10^7(variable)

