Modeling the Resupply, Diffusion and Evaporation of Cesium Based CPD Photocathodes

Zhigang Pan

P3 Photocathode Workshop 2012

Collaborators: Kevin L. Jensen, Eric J. Montgomery

Advisor: Dr. Patrick G. O'Shea (UMD)

We gratefully acknowledge support from:

• Joint Technology Office, Office of Naval Research

Controlled Porosity Dispenser(CPD) Photocathodes

CPD prototype

Controlled Porosity Dispenser(CPD) Photocathodes

CPD prototype

Sintered Tungsten

Scope of this Presentation

CPD Design and Optimization

Cesium diffusion across surface

Cesium evaporation and loss

Roadmap to Modeling CPDs

CPD Design and Optimization

Equation to Model Cesium across the Surface:

$$\frac{\partial \Theta}{\partial t} = D(T)\nabla^2 \Theta - F_{evap}$$
$$\Theta(\Omega) = \Theta_{surf}, \ \Omega \in \text{pore edges}$$

Modeling Θ_{surf}

$$\frac{\partial \Theta}{\partial t} = D(T) \nabla^2 \Theta - F_{evap}$$
$$\Theta(\Omega) = \Theta_{surf}, \ \Omega \in \text{pore edges}$$

Modeling Θ_{surf}

$$\frac{\partial \Theta}{\partial t} = D(T) \nabla^2 \Theta - F_{evap}$$
$$\Theta(\Omega) = \Theta_{surf}, \ \Omega \in \text{pore edges}$$

Boundary Conditions: $\Theta(0) = \Theta_0, \ \Theta(L + \delta z) = \Theta_{surf}$

Modeling Θ_{surf}

$$\frac{\partial \Theta}{\partial t} = D(T) \nabla^2 \Theta - F_{evap}$$
$$\Theta(\Omega) = \Theta_{surf}, \ \Omega \in \text{pore edges}$$

$$\frac{\partial \Theta}{\partial t} = D(T) \nabla^2 \Theta - F_{evap}$$
$$\Theta(\Omega) = \Theta_{surf}, \ \Omega \in \text{pore edges}$$

$$\frac{\partial \Theta}{\partial t} = D(T) \nabla^2 \Theta - F_{evap}$$
$$\Theta(\Omega) = \Theta_{surf}, \ \Omega \in \text{pore edges}$$

Probability of $E > V_0$: $\sum_{free} e^{-E/kT}$ $-\sum_{i=0}^{n} e^{-E_i/kT} + \sum_{free} e^{-E/kT}$

$$\frac{\partial \Theta}{\partial t} = D(T) \nabla^2 \Theta - F_{evap}$$
$$\Theta(\Omega) = \Theta_{surf}, \ \Omega \in \text{pore edges}$$

$$\frac{\partial \Theta}{\partial t} = D(T) \nabla^2 \Theta - F_{evap}$$
$$\Theta(\Omega) = \Theta_{surf}, \ \Omega \in \text{pore edges}$$

$$V_C = \delta - F\psi_e + F^2 V_f + \sum_{i=0}^4 N(i,\theta) V_{nn}^i$$

$$-F\psi_e + F^2 V_f$$
 =

 δ

$$\sum_{i=0}^{4} N(i,\theta) V_{nn}^{i}$$

- Correction for charge neutrality after evaporation
- Nearest neighbor electrostatic cesium-cesium interactions

$$\frac{\partial \Theta}{\partial t} = D(T) \nabla^2 \Theta - F_{evap}$$
$$\Theta(\Omega) = \Theta_{surf}, \ \Omega \in \text{pore edges}$$

 \clubsuit Lennard Jones Contribution to V_0 :

$$V_{LJ} = \sum_{i=0}^{4} N(i,\theta)L_i$$
$$L_i = i4\varepsilon \left[\left(\frac{r_m}{a}\right)^{12} - \left(\frac{r_m}{a}\right)^6 \right]$$

Thermodynamic Contribution to V_0 :

$$V_{\mu} = kT\theta \left(\frac{\partial(\mu/kT)}{\partial\log\theta}\right)_{T,A}$$
$$V_{\mu} = kT \left(\frac{\theta}{1-\theta}\right)$$

Cs

$$\frac{\partial \Theta}{\partial t} = D(T) \nabla^2 \Theta - F_{evap}$$
$$\Theta(\Omega) = \Theta_{surf}, \ \Omega \in \text{pore edges}$$

Theory vs Experiment for F_{evap}

Modeling Diffusion on the Surface

$$\frac{\partial \Theta}{\partial t} = D(T)\nabla^2 \Theta - F_{evap}$$
$$\Theta(\Omega) = \Theta_{surf}, \ \Omega \in \text{pore edges}$$

Laplacian Operator on a Hex stencil

Questions the Model Aims to Answer

CPD Design and Optimization

How uniform is the QE for various CPD parameters?

How does CPD parameters such as:

- Temperature
- Pore Size
- Pore Spacing
- Emitter Thickness,

affect CPD performance?

Preliminary Results

CPD Design and Optimization

• a model of the surface of a CPD was developed to include evaporation, resupply, and migration of cesium

- a model of the surface of a CPD was developed to include evaporation, resupply, and migration of cesium
- The model can successfully predict the surface QE profile of CPD photocathodes

- a model of the surface of a CPD was developed to include evaporation, resupply, and migration of cesium
- The model can successfully predict the surface QE profile of CPD photocathodes
- Run the model to simulate cesium rejuvenation and QE over time at various temperatures

- a model of the surface of a CPD was developed to include evaporation, resupply, and migration of cesium
- The model can successfully predict the surface QE profile of CPD photocathodes
- Run the model to simulate cesium rejuvenation and QE over time at various temperatures
- Use the model for optimization of CPD parameters and diagnostic tool for experiment