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Scope of this Presentation

Cesium resupply 

Cesium diffusion across
surface 

Cesium evaporation and loss 

CPD Design and 
Optimization
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Roadmap to Modeling CPDs

∂Θ

∂t
= D(T )∇2Θ − Fevap

Θ(Ω) = Θsurf , Ω ∈ pore edges

CPD Design and 
Optimization

Equation to Model Cesium 
across the Surface:
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Modeling Θsurf
∂Θ

∂t
= D(T )∇2Θ − Fevap

Θ(Ω) = Θsurf , Ω ∈ pore edges
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Surface
Θsurf
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Diffusion Flux source Evaporation
∂Θ

∂t
= D

∂2Θ

∂z2
+ Jz − Fevap

Boundary Conditions:

Θ(0) = Θ0 , Θ(L+ δz) = Θsurf

Modeling Θsurf
∂Θ

∂t
= D(T )∇2Θ − Fevap

Θ(Ω) = Θsurf , Ω ∈ pore edges

Flow of Cesium Through Pores :

Cs

Cs

Cs

Pore Walls
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∂Θ

∂t
= D(T )∇2Θ − Fevap

Θ(Ω) = Θsurf , Ω ∈ pore edges

Modeling Θsurf

∂Θ
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= D
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∂Θ

∂t
= D(T )∇2Θ − Fevap

Θ(Ω) = Θsurf , Ω ∈ pore edges

Modeling Evaporation
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Figure 5.2: Arrangement of a cesium atom on the [001] surface of tungsten.

for a bound cesium atom to transition between available energy states. σ is the

number density per unit area of available binding sites on the surface, and θ is

the fraction of those sites which are occupied. θ is usually known as the fractional

coverage of cesium atoms on the surface of the solid.

In equation 5.4, σ is determined from information on the type of solid and the

crystal face. For the purposes of this study, the evaporation of cesium atoms off of

tungsten is considered. A tungsten solid forms a body centered cubic lattice with a

lattice constant of 3.15 Å. Knowing this, it is easy to calculate the atomic density

per unit area of tungsten atoms for various crystal face cuts. A bound cesium atom

at the surface will want to occupy spaces that are left in between adjacent tungsten

atoms. For cesium on tungsten, the size of a cesium atom is such that there will

be enough space on the tungsten lattice to accommodate 1 cesium atom for every 4

tungsten atoms (ref). An example of this arrangement for the [001] face of tungsten

is shown in Fig 5.2. We obtain a calculated value of about 10.0× 1014cm−2 for the

50
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Modeling Evaporation
∂Θ

∂t
= D(T )∇2Θ − Fevap

Θ(Ω) = Θsurf , Ω ∈ pore edges
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Modeling Evaporation

Cs

∂Θ

∂t
= D(T )∇2Θ − Fevap

Θ(Ω) = Θsurf , Ω ∈ pore edges
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Fevap =
1

τ
P σ θ

P =

∑

free

e−E/kT

n∑

i=0

e−Ei/kT +
∑

free

e−E/kT

Evaporation Rate :

Probability of :E > V0

Fevap =
1

τ
P σ θ

P =

∑

free

e−E/kT

n∑

i=0

e−Ei/kT +
∑

free

e−E/kT
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Modeling Evaporation
∂Θ

∂t
= D(T )∇2Θ − Fevap

Θ(Ω) = Θsurf , Ω ∈ pore edges

Lenard Jones Interactions

Thermodynamics

Coulomb Forces

Cs

Contributions to V0 :
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Cs

Modeling Evaporation
∂Θ

∂t
= D(T )∇2Θ − Fevap

Θ(Ω) = Θsurf , Ω ∈ pore edges

VC = δ − Fψe + F 2Vf +
4∑

i=0

N(i, θ)V i
nn

δ =

−Fψe + F 2Vf =

4∑

i=0

N(i, θ)V i
nn =

Coulomb Contribution to V0 :

Global long range electrostatic 
cesium cesium interactions

Nearest neighbor electrostatic 
cesium-cesium interactions

Correction for charge neutrality 
after evaporation
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Cs

Modeling Evaporation
∂Θ

∂t
= D(T )∇2Θ − Fevap

Θ(Ω) = Θsurf , Ω ∈ pore edges

VLJ =
4∑

i=0

N(i, θ)Li
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Lennard Jones Contribution to V0 :

Thermodynamic Contribution to V0 :
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Figure 5.5: Comparison between the evaporation model and evaporation
data taken by Langmuir

calculated as:

〈ν〉 =
4∑

i=0

〈νi〉N(n, θ) (5.31)

Where N(i, θ), the probability of a cesium atom having i nearest neighbors for a

surface coverage θ, is given by the Beth-Peierls approximation introduced in the

previous section.
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Modeling Evaporation
∂Θ

∂t
= D(T )∇2Θ − Fevap

Θ(Ω) = Θsurf , Ω ∈ pore edges

Theory vs Experiment for Fevap
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Modeling Diffusion on the Surface
∂Θ

∂t
= D(T )∇2Θ − Fevap

Θ(Ω) = Θsurf , Ω ∈ pore edges
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Θ0

h

Laplacian Operator on a Hex stencil
∂Θ

∂t
= D(T )∇2Θ − Fevap

Θ(Ω) = Θsurf , Ω ∈ pore edges

∇2Θ =
2

3h2

(
−6Θ0 +

6∑

i

Θi

)
+O(h3)

Diffusion Operator for Hex Lattice:
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CPD Design and 
Optimization

Questions the Model Aims to Answer

How uniform is the QE for various 
CPD parameters?

How does CPD parameters such as:
• Temperature
• Pore Size
• Pore Spacing
• Emitter Thickness ,

affect CPD performance?
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Preliminary Results

CPD Design and 
Optimization

≈20%
variation

≈ 2%
variation
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Summary and Future Work
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• a model of the surface of a CPD was developed to 
include evaporation, resupply, and migration of cesium

Summary and Future Work
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• a model of the surface of a CPD was developed to 
include evaporation, resupply, and migration of cesium

• The model can successfully predict the surface QE profile 
of CPD photocathodes
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• a model of the surface of a CPD was developed to 
include evaporation, resupply, and migration of cesium

• The model can successfully predict the surface QE profile 
of CPD photocathodes

• Run the model to simulate cesium rejuvenation and QE 
over time at various temperatures 
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• a model of the surface of a CPD was developed to 
include evaporation, resupply, and migration of cesium

• The model can successfully predict the surface QE profile 
of CPD photocathodes

• Run the model to simulate cesium rejuvenation and QE 
over time at various temperatures 

• Use the model for optimization of CPD parameters and 
diagnostic tool for experiment

Summary and Future Work
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