Jet Substructure & N-subjettiness

Jesse Thaler

Thanks to Sal Rappoccio and Chris Lee for slides! David Miller for up-to-the-minute results!

Based on work with Ken Van Tilburg: 1011.2268 & 1108.2701 Preliminary work with Ilya Fiege, Matthew Schwartz, and Iain Stewart

Jesse Thaler — Jet Substructure & N-subjettiness

Extreme Kinematics at the LHC

Heavy resonance to boosted tops... ...looks just like QCD dijets.

Must reduce QCD by 10⁻³ in boosted regime! (rejection factor of few x 10⁻² per jet)

Experimentally... it works!

Jet 3 : pt 47.8 GeV/c, b-tag discriminant 4.2

> Jet 2: Jet Pruning pt 484.3 GeV/c, mass = 68.8 GeV/c2 Jet 2 + 3 : Mass = 167

Jet 1 : Top Tagging pt 589.1 GeV/c, 3 subjets, mass = 186.7 GeV/c2, minMass = 87.2 GeV/c2

CMS-PAS-EXO-11-006

Jet Substructure & N-subjettiness

Overview of Jet Substructure

Boosted objects at the LHC

Introducing N-subjettiness

Top tagging with τ_3/τ_2 , W/Z/H tagging with τ_2/τ_1

[JDT, Van Tilburg: 1011.2268 & 1108.2701]

Jesse Thaler — Jet Substructure & N-subjettiness

Ongoing Theoretical Studies

Expanding about the infinite boost limit

[Fiege, Schwartz, Stewart, JDT: 12xx.xxxx]

Overview of Jet Substructure

Boosted objects at the LHC

Thanks to Sal Rappoccio and Chris Lee for slides!

(I am assuming you know how to reconstruct jets, R = eta-phi distance, etc.)

let Substructure by Eye

Two jets with $m_{jet} = m_{top}$. Coloring by exclusive k_T .

Boosted QCD Jet, R = 0.8

Basic Tagging Strategies:

Algorithmic: $\{p_i\} \rightarrow p_{jet}, yes/no$ Currently used by CMS: JHTT, Pruning

fcut

Jet Shape Cut:
$$f(\{p_i\}) <$$

Theoretically appealing, typically less effective

Algorithmic: Johns Hopkins Tagger

Inspired by BDRS Boosted Higgs Method

Sal Rappoccio — Panic 2011

Algorithmic: Jet Grooming

See also Jet Filtering & Jet Trimming

Sal Rappoccio — Panic 2011

CMS-PAS-EXO-11-006

Jet 1 : Top Tagging pt 589.1 GeV/c, 3 subjets, mass = 186.7 GeV/c2, minMass = 87.2 GeV/c2

Other Notable Measurements ATL-STDM-2011-19

ATLAS Measurement of Jet Substructure in Inclusive QCD Jets

Other Notable Measurements ATL-STDM-2011-19

ATLAS Test of Grooming Procedures and Pileup

Jet Shapes: Angularities

Close Relatives of N-subjettiness

Christopher Lee — Panic 2011

Jet Shapes: Planar Flow

Top Tagging with Jet Shapes

Christopher Lee — Panic 2011

Additional Observables

$$\mathcal{D} = \frac{1}{R_{j_1 j_2}^2} \sum_{\alpha \in \text{jet}} \frac{p_{T,\alpha}}{p_{T,\text{jet}}} R_{\alpha}^2$$

[Hook, Jankowiak, Wacker]

Pull

$$\vec{t} = \sum_{\alpha \in \text{jet}} \frac{p_{T,\alpha}}{p_{T,\text{jet}}} |\vec{r}_{\alpha}| \vec{r}_{\alpha} .$$
[Gallicchio, Schwartz]

Substructure without Trees

$$\Delta \mathcal{G}(R) = R \frac{\sum_{j_1 \neq j_2} d_{j_1 j_2}^{(\text{JADE})} K(R - \Delta R_{j_1 j_2})}{\sum_{j_1 \neq j_2} d_{j_1 j_2}^{(\text{JADE})} \Theta(R - \Delta R_{j_1 j_2})}$$

[Jankowiak, Larkoski]

See Seung Lee's talk on Template Overlap Method

Other Algorithmic Methods: HEPTopTagger, YSplitter, Filtripruning

Top Tagging c. 2010

Top Tagging c. 2011

Introducing N-subjettiness

Top tagging with τ_3/τ_2 , W/Z/H tagging with τ_2/τ_1

[JDT, Van Tilburg: 1011.2268 & 1108.2701]

Introducing N-subjettiness

$$\tau_N = \frac{1}{d_0} \sum_k p_{T,k} \min \left\{ \Delta R_{k,1}, \Delta R_{k,2}, \dots, \Delta R_{k,N} \right\}$$

Generalization of thrust to multiple (sub)jets!

(strictly speaking, generalization of jet broadening)

Adapted from "N-jettiness", used to define exclusive jet bins [Stewart, Tackmann, Waalewijn: 1004.2489]

Introducing N-subjettiness

$$\tau_N = \frac{1}{d_0} \sum_k p_{T,k} \min\left\{\Delta R_{k,1}, \Delta R_{k,2}, \dots, \Delta R_{k,N}\right\}^{\beta}$$

Choice of subjet axes? Choice of angular weighting?

Axes that minimize T_N !

$$\tau_N = \min_{\{p_{\text{axes}}\}} \tilde{\tau}_N$$

Analogous to thrust Fast implementation by generalized k-means clustering $\beta = I : \approx$ Jet Broadening $\beta = 2 : \approx$ Thrust $\beta = 2 \cdot a : \approx$ Angularities

 β = I is preferred for boosted object hunting (Open theoretical question: why?)

No algorithmic dependence (apart from initial jet finding)

Tagging with T_N/T_{N-1}

Some raw distinguishing power...

Flexible cut to adjust signal acceptance vs. background rejection

 T_3/T_2 : Boosted Tops T_2/T_1 : Boosted W/Z/H Ratio is quasi-boost invariant

Hot Off the Press from ATLAS

Calibration on Background. Thanks to David Miller!

Top Tagging c. 2011

500 GeV < _{PT} < 600 GeV

fixed jet mass cut: 160 GeV to 240 GeV

one-dimensional cut on τ_3/τ_2 (from minimum)

dashed = Fisher Discriminant

N-subjettiness:

Intuitive measure of "number of subjets" Based on true jet shape (can use as hybrid, too) Plays well with multivariate methods Excellent tagging performance out of the box Ratio T_N/T_{N-1} has reduced JES sensitivity Plays well with grooming (e.g. pruning) Calculable (& resummable!) in perturbation theory

Pythia 6.4 more optimistic, Sherpa more pessimistic, Detector effects also important.

Ongoing Theoretical Studies

Expanding about the infinite boost limit

[Fiege, Schwartz, Stewart, JDT: 12xx.xxxx]

Calculate Idealized 2-subjettiness

In SCET, easier to use "geometric" definition:

$$\tau_2 = \sum_k \min\{\hat{n}_1 \cdot p_k, \hat{n}_2 \cdot p_k\}$$

Essentially 2-subjettiness with $\beta = 2$, using light-like vectors

2-subjettiness in Pythia

Allows systematic jet substructure calculations in I/Q

2-subjettiness in SCET

thrust axis and boost axis

Recycle NNLL thrust by boosting! (and θ integral...)

$$\frac{1}{\sigma_0} \frac{d\sigma}{d\tau_{2/1}} = \widehat{T}_1^2 \int \frac{d\cos\theta}{2} H(m_Z, \mu_H) U_H(m_Z, \mu_H, \mu_J) \\ \times \int dk \, d\ell \, J_{\tau_{2/1}} \Big[\widehat{T}_1 \big(\widehat{T}_1 \tau_{2/1} - k \big), \Big\{ \frac{2Q_i}{\widehat{T}_1} \Big\}, \mu_J \Big] \\ \times U_S^\tau \Big(k - \ell, \frac{\mu_J}{\beta_\theta}, \frac{\mu_S}{\beta_\theta} \Big) \, S_\tau \left(\ell - \frac{2\overline{\Omega}_1}{\beta_\theta}, \frac{\mu_S}{\beta_\theta} \right),$$

Boosted Z Signal Predictions

Surprisingly good agreement between Pythia and NNLL

Next targets: fat jet background, boosted top signal

Correction Factors

Estimated sizes using Pythia

Effects included in SCET calculation

Fully analytic corrections, hadronization can be derived from LEP thrust

Effects neglected (scale as I/Q)

Remaining effects less than 5% (also Γ/m_Z calculable effects)

Excitement at QCD/BSM Boundary

MAIN MENU

Home	The BOOST series of workshops brings together world-leading theorists and experimentalists from the Tevatron experiments and ATLAS and CMS. The goal is to enhance the potential of the LHC for the decay topologies that form when highly boosted heavy particles like the W and Z boson and top quarks decay. The next event in the BOOST series will be organized by IFIC Valencia. The conference will take place in the centro cultural Bancaja in the heart of Valencia from the 23rd until the 27th of July 2012. Registration will start in April. More information will be available on this webpage soon.	SLAC - 2009
Scientific programme		Oxford - 2010
Timetable		Princeton - 2011
Committees		
Poster		
Financial support		
Accomodation		
Registration		
Participants		USEFUL LINKS
		IFIC Valencia
		How to get to Valencia
	BOOST2012 IS POSSIBLE THANKS TO THE GENEROUS SUPPORT OF OUR SPONSORS:	
	CSIC INSTITUT DE LISICA CSIC DATE DE LISICA COLLENCIANA COLLENCIANA COLLENCIANA COLLENCIANA COLLENCIANA COLLENCIANA COLLENCIANA	N 110

Jesse Thaler — Jet Substructure & N-subjettiness

THE BOOST SERIES

Jet Substructure & N-subjettiness

Overview of Jet Substructure

Boosted objects at the LHC

Introducing N-subjettiness

Top tagging with τ_3/τ_2 , W/Z/H tagging with τ_2/τ_1

[JDT, Van Tilburg: 1011.2268 & 1108.2701]

Jesse Thaler — Jet Substructure & N-subjettiness

Ongoing Theoretical Studies

Expanding about the infinite boost limit

[Fiege, Schwartz, Stewart, JDT: 12xx.xxxx]

Backup Slides

Jesse Thaler — Jet Substructure & N-subjettiness

Credit to Original Literature

[Seymour; Butterworth, Cox, Forshaw; ...] Higgs

[Butterworth, Davison, Rubin, Salam; Plehn, Salam, Spannowsky; see also Kribs, Martin, Roy, Spannowsky; ...]

[Brooijmans; Kaplan, Rehermann, Schwartz, Tweedie; Ellis, Vermilion, Walsh; see also JDT, Wang; Almeida, Lee, Perez, Sterman, Sung, Virzi; ...]

SUSY

[Butterworth, Ellis, Raklev, Salam; ...]

WTagging

More Plots

efficiency

Linear Fisher Discriminant

$$160 \text{ GeV} < m_{\text{jet}} < 280 \text{ GeV}$$
$$\vec{L} \cdot \vec{X} < c \text{ with}$$
$$\vec{L} = [2.30, -5.85, -1.89, 6.21, 7.25, -5.35, -0.86, 1.61, -14.07]$$
$$\vec{X} = \left[\tau_1^{(1)}, \tau_2^{(1)}, \tau_3^{(1)}, \frac{\tau_2^{(1)}}{\tau_1^{(1)}}, \frac{\tau_3^{(1)}}{\tau_2^{(1)}}, \frac{\tau_2^{(2)}}{\tau_1^{(2)}}, \frac{\tau_3^{(2)}}{\tau_2^{(2)}}, \left(\frac{\Delta m}{m}\right)_+, \left(\frac{\Delta m}{m}\right)_-\right]$$

Improving the Reach

Fight QCD even before applying top mass cut

Recent Applications

$$h \to aa \to (\tau^+ \tau^-)(\tau^+ \tau^-)$$

$$\rho_G \to \pi_G \pi_G \to (gg)(gg)$$

0.4

3

Jesse Thaler — Jet Substructure & N-subjettiness

39

8

Minimization

Classic problem in computer science!

 $\beta = 2 \ (\approx \text{thrust})$: "k-means clustering" \approx iterative jet finding, fixed number of jets, voronoi boundaries

$$\frac{\partial \tilde{\tau_1}}{\partial \vec{p}_{\text{axis}}} = 0 \qquad \Rightarrow \qquad \vec{p}_{\text{axis}} = \sum_k \vec{p}_k$$

i.e. jet axis = jet momentum

 $\beta = 1$ (\approx jet broadening): We developed new minimization algorithm, jet axis \neq jet momentum, kind of like a "median" jet

Jesse Thaler — Jet Substructure & N-subjettiness

Effect of Minimization

A New/Old Jet Algorithm

Exclusive Cones for Higgs Searches

[JDT, Vermilion: Ongoing]

Thoughts on Jet Algorithms

Hybrid Jet Shape: $\tau_N = f(\{p_k\}, \{p_{axes}\})$

Minimization of any hybrid jet shape defines a jet algorithm!

Not a new idea... Stable cone finding:

Minimize
over axis A:
$$\tau_1(R_0) = \sum_k p_{Tk} \min(\Delta R_{A,k}, R_0)^2 \leftarrow \text{Key!}$$
Solution: $p_{jet} = \sum_k p_k$ in cone[Ellis, Huston,
Tonnesmann]

In CS optimization: cluster finding = minimization

N-jettiness

Original Purpose: Define exclusive jet cross sections Especially important for Higgs + N jet searches

[Stewart, Tackmann, Waalewijn]

"Exactly N jets"?

Current Method

Run jet algorithm, require exactly N jets above jet pT threshold

Alternative Method

Find exactly N jets, restrict event to be below N-jettiness threshold

With minimization, can use to define N jets!

$$\tau_N^{(\beta)}(R_0) = \sum_i p_{T,i} \min\left\{ \left(\Delta R_{1,i} \right)^\beta, \dots, \left(\Delta R_{N,i} \right)^\beta, \left(R_0 \right)^\beta \right\}$$

N-jettiness Jets

Event display comparing N–jettiness and anti– k_{T} clustering

A Killer App?

BDRS Method A Practical Higgs Finder [Butterworth, Davison, Rubin, Salam]

An Alternative?

Signal has exactly 2 jets! No need for jet substructure, just minimize 2-jettiness

(Or if you have to use substructure, use T_2/T_1 on fat jets)

Interpolating the Higgs Search

[Chris Vermilion, very preliminary]

Interpolating for Top?

