BSM THEORY OVERVIEW

Patrick Meade YITP - Stony Brook University

BSM THEORY OVERVIEW ()RIMPLICATIONS OF THE LHC DATA FOR EXTENSIONS OF THE STANDARD MODEL

Patrick Meade YITP - Stony Brook University

Lots of models out there...

OVERVIEW

ATLAS SUSY Searches* - 95% CL Lower Limits (Status: March 2012)

			· · · · · · · · · · · · · · · · · · ·			
	MSUGRA/CMSSM : 0-lep + j's + E _{T,miss}	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-033]	1.40 TeV q = g mass			
clusive searches	MSUGRA/CMSSM : 1-lep + j's + E _{T,miss}	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-041]	1.20 TeV q = g mass	$\int Ldt = (0.03 - 4.7) \text{ fb}^{-1}$		
	MSUGRA/CMSSM : multijets + E _{T,miss}	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-037]	850 Gev g mass (large m ₀)	(s = 7 TeV		
	Pheno model : 0-lep + j's + E _{T,miss}	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-033]	1.38 TeV q̃ mass (m(g̃) < 2 TeV	(, light $\overline{\chi}_1^0$) ATLAS		
	Pheno model : 0-lep + j's + E _{T.miss}	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-033]	940 GeV \tilde{g} mass $(m(\tilde{q}) < 2 \text{ TeV}, \text{ ligh})$	t $\bar{\chi}_1^0$ Preliminary		
	Gluino med. $\tilde{\chi}^{\pm}$ ($\tilde{g} \rightarrow q \bar{q} \tilde{\chi}^{\pm}$) : 1-lep + j's + $E_{T,miss}$	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-041]	300 GeV g̃ mass (<i>m</i> (χ̃ ⁰ ₁) < 200 GeV, <i>i</i>	$m(\bar{\chi}^{\pm}) = \frac{1}{2}(m(\bar{\chi}^{0}) + m(\tilde{g}))$		
	GMSB : 2-lep OS _{SF} + E _{T,miss}	L=1.0 fb ⁻¹ (2011) [ATLAS-CONF-2011-156]	810 GeV g mass (tanβ < 35)	2		
5	GMSB : $1-\tau + j's + E_{T,miss}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-005]	920 GeV g̃ mass (tanβ > 20)			
	GMSB : $2-\tau + j's + E_{T,miss}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-002]	990 Gev g mass (tanβ > 20)			
	$GGM:\gamma\gamma + E_{T,miss}$	L=1.1 fb ⁻¹ (2011) [1111.4116]	805 GeV \tilde{g} mass $(m(\tilde{\chi}^0) > 50 \text{ GeV})$			
	Gluino med. \tilde{b} ($\tilde{g} \rightarrow b \bar{b} \chi^0$) : 0-lep + b-j's + $E_{T,miss}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-003]	soo GeV \tilde{g} mass $(m(\tilde{\chi}_{\star}^{0}) < 300 \text{ GeV})$			
tion	Gluino med. \tilde{t} ($\tilde{g} \rightarrow t \tilde{t} \chi^0$) : 1-lep + b-j's + $E_{T miss}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-003]	710 GeV g mass (m(x ⁰) < 150 GeV)			
nera	Gluino med. \tilde{t} ($\tilde{g} \rightarrow t\bar{t}\chi^0$): 2-lep (SS) + j's + $E_{T,miss}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-004]	650 GeV g̃ mass (m(χ̃,) < 210 GeV)			
hird ger	Gluino med. \tilde{t} ($\tilde{g} \rightarrow t \bar{t} \chi^0$) : multi-j's + $E_{T miss}$	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-037]	830 GeV \tilde{g} mass $(m(\bar{\chi}_{*}^{0}) < 200 \text{ GeV})$			
	Direct $\tilde{b}\tilde{b}$ ($\tilde{b}_{,} \rightarrow b\bar{\chi}^{0}$) : 2 b-jets + E_{T} miss	L=2.1 fb ⁻¹ (2011) [1112.3832]	390 GeV \tilde{b} mass $(m(\tilde{\chi}_{-}^{0}) < 60 \text{ GeV})$			
1	Direct tt (GMSB) : Z(→II) + b-jet + E	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-036]	310 GeV T mass (115 < m(x)) < 230 GeV)			
(2)	Direct gaugino $(\tilde{\chi}^{\pm}_{\tau}\tilde{\chi}^{0}_{-} \rightarrow 3 \tilde{\chi}^{0}_{-})$: 2-lep SS + $E_{T miss}$	L=1.0 fo ⁻¹ (2011) [1110.6189] 170 GeV	$\bar{\chi}_{+}^{\pm}$ mass (($m(\bar{\chi}_{+}^{0}) < 40$ GeV, $\bar{\chi}_{+}^{0}, m(\bar{\chi}_{+}^{\pm}) = m(\bar{\chi}_{-}^{0}), m(\bar{\mu}_{+})$	\bar{v}) = $\frac{1}{2}(m(\bar{\chi}_{*}^{0}) + m(\bar{\chi}_{*}^{0})))$		
ă	Direct gaugino $(\tilde{\chi}_{\tau}^{\pm}\tilde{\chi}_{\tau}^{0} \rightarrow 3I \tilde{\chi}_{\tau}^{0})$: 3-lep + $E_{\tau miss}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-023] 2	50 GeV $\overline{\chi}_{\star}^{\pm}$ mass $(m(\overline{\chi}_{\star}^{0}) < 170$ GeV, and as above)	2		
ŝ	AMSB : long-lived $\bar{\chi}^{\pm}_{*}$	L=4.7 fb ⁻¹ (2011) [CF-2012-034]	mass $(1 < \tau(\bar{\chi}_{*}^{\pm}) < 2 \text{ ns}, 90 \text{ GeV limit in } [0.2,90] \text{ ns})$			
ticle	Stable massive particles (SMP) : R-hadrons	L=34 pb ⁻¹ (2010) [1103.1984]	562 GeV g mass			
lag	SMP : R-hadrons	L=34 pb ⁻¹ (2010) [1103.1984]	294 GoV b mass			
ived	SMP : R-hadrons	L=34 pb ⁻¹ (2010) [1103.1984]	309 Gev t mass			
l-gr	SMP : R-hadrons (Pixel det. only)	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-022]	810 GeV g mass			
L0	GMSB : stable ₹	L=37 pb ⁻¹ (2010) [1106.4495] 136 GeV	t mass			
	RPV : high-mass eµ	L=1.1 fb ⁻¹ (2011) [1109.3089]	1.32 TeV V, mass (λ'1++=0.10, λ.	=0.05)		
2PV	Bilinear RPV : 1-lep + j's + ET, miss	L=1.0 fb ⁻¹ (2011) [1109.6606]	760 Gev q = g mass (cτ _{1 cp} < 15 mm)			
U,	MSUGRA/CMSSM - BC1 RPV : 4-lepton + ET,miss	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-035]	1.77 TeV g mass			
	Hypercolour scalar gluons : 4 jets, m _i ≈ m _{kl}	L=34 pb ⁻¹ (2010) [1110 2693] 185 Ge	sgluon mass (excl: $m_{aa} < 100$ GeV, $m_{aa} \simeq 140 \pm 3$	3 GeV)		
		10 ⁻¹	1	10		
Mass scale [TeV]						

*Only a selection of the available mass limits on new states or phenomena shown

No evidence for SUSY

OVERVIEW

ATLAS Exotics Searches* - 95% CL Lower Limits (Status: March 2012)

	Large ED (ADD) : monojet	L=1.0 fb ⁻¹ (2011) [ATLAS-CONF-2011-096]	3.2 TeV M _Ω (δ=2)	
	Large ED (ADD) : diphoton	L=2.1 fb ⁻¹ (2011) [1112.2194]	3.0 TeV M _S (GRW cut-	
10	$UED: \gamma\gamma + E_{\tau}$	L=1.1 fb ⁻¹ (2011) [1111.4116]	1.23 TeV Compact. scale 1/R (SPS8) Preliminary
ons	RS with $k/M_{pl} = 0.1$: diphoton, m_{rr}	L=2.1 fb ⁻¹ (2011) [1112.2194]	1.85 TeV Graviton mass	, , , , , , , , , , , , , , , , , , , ,
nsi	RS with $k/M_{Pl} = 0.1$: dilepton, m_{ll}	L=4.9-5.0 fb ⁻¹ (2011) [ATLAS-CONF-2012-007]	2.16 TeV Graviton mass	for more and
BUU	RS with k/M _{PI} = 0.1 : ZZ resonance, m _{III / III}	L=1.0 fb ⁻¹ (2011) (1203.0718)	845 Gev Graviton mass	$Ldt = (0.04 - 5.0) \text{ fb}^{-1}$
i o	RS with $g /g = -0.20$: $t\bar{t} \rightarrow l+jets, m$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-029]	1.03 TeV KK gluon mass	s = 7 TeV
xtr	ADD BH $(M_{TH}^{gggs}M_{D}^{s}=3)$: multijet, Σp_{τ} , N_{iets}^{tt}	L=35 pb ⁻¹ (2010) [ATLAS-CONF-2011-068]	1.37 TeV M _D (δ=6)	
ш	ADD BH (M _{TH} /M _D =3) : SS dimuon, N _{ch. part.}	L=1.3 fb ⁻¹ (2011) [1111.0080]	1.25 TeV M _D (δ=6)	
	ADD BH $(M_{TH}/M_{D}=3)$: leptons + jets, Σp_{T}	L=1.0 fb ⁻¹ (2011) [ATLAS-CONF-2011-147]	1.5 TeV M _D (δ=6)	
	Quantum black hole : dijet, $F_{y}(m_{j})$	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-038]	4.11 TeV M _D (δ=6)	
	qqqq contact interaction : χ(m)	L=4.8 fb ⁻¹ (2011) [ATLAS-CONF-2012-038]	7.8 TeV A	
5	qqll Cl : ee, μμ combined, m	L=1.1-1.2 fb ⁻¹ (2011) [1112.4462]	10.2 TeV	A (constructive int.)
	uutt CI : SS dilepton + jets + E _{T,miss}	L=1.0 fb ⁻¹ (2011) [1202.5520]	1.7 TeV A	
٤	SSM Z' : m	L=4.9-5.0 fb ⁻¹ (2011) [ATLAS-CONF-2012-007]	2.21 TeV Z' mass	
2	SSM W': m _{T.e/µ}	L=1.0 fb ⁻¹ (2011) [1108.1316]	2.15 TeV W' mass	
a	Scalar LQ pairs (β=1) : kin. vars. in eejj, evjj	L=1.0 fb ^{-*} (2011) [1112.4828]	660 GeV 1 st gen. LQ mass	
-	Scalar LQ pairs (β=1) : kin. vars. in μμjj, μvjj	L=1.0 fb ^{-*} (2011) [Preliminary]	685 Gev 2 nd gen. LQ mass	
92	4^{th} generation : $Q_1 \overline{Q}_4 \rightarrow WqWq$	L=1.0 fb ^{-*} (2011) [1202.3389] 350 GeV	Q ₄ mass	
ALC: N	4 th generation : u₁ u₄→ WbWb	L=1.0 fb ^{-*} (2011) [1202.3076] 404 G	ev u ₄ mass	
nb	4^{th} generation : $d_1 d_4 \rightarrow WtWt$	L=1.0 fb ^{-*} (2011) [Preliminary] 48	gev d ₄ mass	
θM	New quark b' : b' $\overline{b}' \rightarrow Zb+X, m_{Tb}$	L=2.0 fb ^{-*} (2011) [Preliminary] 400 G	ev b' mass	
<	$T\overline{T}_{axc, 4th, eec} \rightarrow t\overline{t} + A_0A_0$: 1-lep + jets + $E_{T, miss}$	L=1.0 fb ⁻¹ (2011) [1109.4725] 420 0	T mass (m(A _n) < 140 GeV)	
E.	Excited quarks : y-jet resonance, m	L=2.1 fb ⁻¹ (2011) [1112.3580]	2.46 TeV q* mass	
fol	Excited quarks : dijet resonance, m	L=4.8 fb ^{-*} (2011) [ATLAS-CONF-2012-038]	3.35 TeV q* mass	
(cit.	Excited electron : e-y resonance, m	L=4.9 fb" (2011) [ATLAS-CONF-2012-023]	2.0 TeV e* mass (Λ = m(e*))	
ŵ	Excited muon : µ-y resonance, m	L=4.8 fb ⁻¹ (2011) [ATLAS-CONF-2012-023]	1.9 TeV μ* mass (Λ = m(μ*))	
	Techni-hadrons : dilepton, m _{eeluu}	L=1.1-1.2 B" (2011) [ATLAS-CONF-2011-125] 470	GeV ρ_{T}/ω_{T} mass $(m(\rho_{T}/\omega_{T}) - m(\pi_{T}) = 100 \text{ GeV}$	V)
	Techni-hadrons : WZ resonance (vIII), m	L=1.0 fb ^{-*} (2011) [Preliminary] 483	3 GeV p_{T} mass $(m(p_{T}) = m(\pi_{T}) + m_{W}, m(a_{T}) = 1$.1 <i>m</i> (ρ _τ))
	Major. neutr. (LRSM, no mixing) : 2-lep + jets	L=2.1 fb ⁻¹ (2011) [Preliminary]	1.5 TeV N mass (m(W _R) = 2 TeV) .
1er	W _R (LRSM, no mixing) : 2-lep + jets	L=2.1 fb ⁻¹ (2011) [Preliminary]	2.4 TeV W _R mass (m(N) <	1.4 GeV)
0 1	H_{L}^{L+} (DY prod., BR($H_{L}^{L+} \rightarrow \mu\mu$)=1) : SS dimuon, $m_{\mu\mu}$	L=1.6 fb ⁻¹ (2011) [1201.1091] 355 GeV	H ^{tt} mass	
	Color octet scalar : dijet resonance, m	L=4.8 fb ⁻¹ (2011) [ATLAS-CONF-2012-038]	1.94 TeV Scalar resonance ma	155
	Vector-like quark : CC, mivg	L=1.0 fb ⁻¹ (2011) [1112.5755]	900 GeV Q mass (coupling $\kappa_{qQ} = v/m_Q$)	
	Vector-like quark : NC, m _{Ilq}	L=1.0 fb ⁻¹ (2011) [1112.5755]	760 GeV Q mass (coupling $\kappa_{qQ} = v/m_Q$)	
		10 ⁻¹	1 1	0 10 ²
				Mass scale [TeV]

*Only a selection of the available mass limits on new states or phenomena shown

No evidence for anything else...

THE END

OR IS IT?

NOT ALL MODELS CREATED EQUALLY

AND WE FOUND SOMETHING*!

WHY HAVEN'T WE FOUND ANYTHING ELSE AND WHERE TO LOOK?

- What are we looking for so far?
 - Physics of EWSB
 - EW naturalness
 - Dark Matter
 - Odd balls

PHYSICS OF EWSB

Weakly coupled

Strongly coupled

PHYSICS OF EWSB

Weakly coupled

Strongly coupled

EW NATURALNESS AFTER DECADES OF RESEARCH...

Supersymmetry

Extra Dimensions

AdS/CFT

Strong Dynamics

How do we put it on trial???

DARK MATTER/WIMP MIRACLE

$$\Omega_X \propto \frac{1}{\langle \sigma v \rangle} \sim \frac{m_X^2}{g_X^4}$$

If we have weak scale couplings and masses this works out right

Just one number, maybe we put too much stock in it as far as the LHC goes

WHERE ARE WE AT?

WHERE ARE WE AT?

WHAT'S EXCLUDED?

- ATLAS and CMS have done well at the following things so far:
 - Basic two body final states and close to these...
 - Really blatant oddballs
 - Anything + MET

BUMPS AND BIG SIGNAL SEARCHES

BUMPS AND BIG SIGNAL SEARCHES

Nothing here... move along our p-value is big

OBVIOUS ODDBALLS

- Experiments have looked for SUSY in a variety of different flavors and channels:
 - Jets + MET
 - b jets +MET
 - Ilep+jets +MET
 - OS dileptons +MET
 - SS dileptons + MET
 - diphoton+MET
 - multileptons
 - R-hadrons
 - AMSB

For the most part exclusion is based on MET + (n)m (b)-jets +k leptons

• Where do we expect exclusions?

• Not all searches as powerful as they could be (at least at 1/fb)

REGARDLESS OF SUBTLE DETAILS

WHAT'S NOT EXCLUDED YET...

- Final states without much MET
- primarily 3rd Generation final states produced from direct production of 3rd generation partners
- Long lived final states
- Odd balls

• All of these ideas may be correlated!

LOW MET

 \overline{S}

 \overline{t}

Stealth SUSY

Fan, Reece, Ruderman

MFV RPV

Csaki, Grossman, Heidenreich

HAVEN'T DIRECTLY SEARCHED STATES FOR NATURALNESS

• We care about the third generation, top partners in particular for naturalness - don't HAVE to have other things around...

We've been waiting on this search for a long time...

ATLASTOTHE RESCUE!

Search for Scalar Top Quark Pair Production in Natural Gauge Mediated Supersymmetry Models with the ATLAS Detector in ppCollisions at $\sqrt{s} = 7$ TeV

Direct Stop

ATLAS TO THE RESCUE!

Search for Scalar Top Quark Pair Production in Natural Gauge Mediated Supersymmetry Models with the ATLAS Detector in ppCollisions at $\sqrt{s} = 7$ TeV

WT#\$%@*?

)p

$$m_{\tilde{q}_3} = m_{\tilde{u}_3} = -A_t/2; \quad \tan\beta = 10$$

HAVEN'T DIRECTLY SEARCHED STATES FOR NATURALNESS

• We care about the third generation, top partners in particular for naturalness - don't HAVE to have other things around...

Not quite there, but we are getting there SOON!

MODEL BUILDING 3RD

- To avoid constraints we'd like to separate off first two generations from the third
 - Compositeness Csaki, Randall, Terning
 - Flavor Mediation Craig, Mcullough, Thaler
 - Other 3rd generation fun Craig et al. and others in the past

All avoid naturalness for stops, but do we really care? Depends on Higgs sector

3RD WITHOUT MET

- Only talked about "SUSY" partners
- Little Higgs, XDs, etc.
- Good Models?

3RD WITHOUT MET

Exclude Triangles not Points

Wb

- Only talked about "SUSY" partners
- Little Higgs, XDs, etc.
- Good Models? no... BUT
- Can still profess ignorance and look for motivated states
 7t

IMPLICATIONS FROM HIGGS

- Why do we care about 3rd generation? HIGGS
- We now have something concrete to say if we have found the thing!

Higgs at 125 Gev, what does it mean?

Another nail in the coffin for strong coupling?

Not too great for SUSY either, right?

SUSY AND 125 GEV HIGGS

10

No Mixing

FIG. 6. Higgs mass as a function of M_S , with $X_t = 0$. The green band is the output of FeynHiggs together with its associated uncertainty. The blue line represents 1-loop renormalization group evolution in the Standard Model matched to the MSSM at M_S . The blue bands give estimates of errors from varying the top mass between 172 and 174 GeV (darker band) and the renormalization scale between $m_t/2$ and $2m_t$ 12(lighter band).

 A_t

SUSY AND 125 GEV HIGGS

- Three options:
 - Maximal Mixing and "light" stops
 - No good high scale models and low scale models have to be at "high" scales
 - SUSY really heavy and tuned Split SUSY
 - SUSY effects Higgs properties (do we care about 3rd gen as much?)

SUSY AND 125 GEV HIGGS

• "Low" scale models = Long lifetimes

Tuned models = Long lifetimes as well! quasi-stable R-hadrons

How much do we care about stops?

LONG LIFETIMES

- These exist as a whole branch of BSM models without Higgs motivation
- Handful of searches already, but typically tied to obscure models!
- Can give us deep insights!

HIGGS CORRELATIONS

HIGGS CORRELATIONS

Carmi, Falkowski, Kuflik, Volansky + many others

Figure 3: Left: Favored region, 90% CL, in the $m_{\tilde{t}} - m_h$ plane, derived from the combination of the three search channels, for the one-scalar model described in Sec. 4.1. Right: Constraints for $m_h = 125$ GeV. The three bands show the 1σ allowed regions from Higgs produced via gluon fusion decaying to two photons (ggF $h \to \gamma\gamma$, pink), Higgs produced via gluon fusion decaying through two Z-bosons (ggF $h \to ZZ^*$, blue), and Higgs produced via vector boson fusion decaying to two photons (VBF $h \to \gamma\gamma$, beige). The three curves show the theoretical predictions as a function of $m_{\tilde{t}}$: ggF $h \to \gamma\gamma$ (solid-pink), ggF $h \to ZZ$ (dashed-blue), and VBF $h \to \gamma\gamma$ (dotted-beige). The region to the right of the green line at $m_{\tilde{t}} = 300$ GeV shows the 90% CL experimental (combined) bound.

HIGGS CORRELATIONS By combining exclusive channels AT THIS EARLY JUNCTURE, we can already make important statements

about BSM physics

Electroweak Baryogenesis in the MSSM is done!

 $m_h = 125 \,\mathrm{GeV}$

OTHER ODDBALLS?

New Odd Tracks (NOTs) eg: $X + \bar{X} \sim (3, 1)_0 + (\bar{3}, 1)_0$ $Y + \bar{Y} \sim (1, 1)_{1/9} + (1, 1)_{-1/9}$ $\frac{1}{\Lambda^2} X \bar{d}_R Y^3$

Microbarn cross sections without detection!

BSMTHEORY STATUS

BSMTHEORY STATUS

• No sign of it

BSMTHEORY STATUS

- No sign of it
- Lots of holes
 - Low MET
 - No MET?

Role of BSM theory now:

Model for explanations

- 3rd gen
 Models for experimentalists
- Long Lifetimes
- Odd balls

Obvious MC implications: SM needs to be better BSM has to be ready for weird things but with accuracy