(B)SM in SHERPA

Stefan Höche¹

SLAC NAL Theory Group

MC4BSM 2012 Ithaca, 03/22/12

¹for the Sherpa collaboration: Hendrik Hoeth, Frank Krauss, Marek Schönherr, Steffen Schumann, Frank Siegert, Korinna Zapp, SH

SHERPA Overview

Modules

- Matrix Element generators AMEGIC++ (SM, BSM) and Comix (SM)
- Parton Shower based on Catani-Seymour subtraction
- Multiple interaction model à la Pythia (non-interleaved)
- In-house cluster hadronization and interface to PYTHIA string fragmentation (cross-checks!)
- Built-in hadron decay package \approx 400 hadrons, \approx 2500 decay channels
- Photon emission generator based on YFS formalism

SHERPA Overview

Interfaces

- FeynRules [Christensen,Duhr] CPC180(2009)1614
- LHAPDF [Whalley et al.] hep-ph/0508110
- Binoth Les-Houches Accord [Binoth et al.] CPC181(2010)1612
- FastJet [Cacciari,Salam] PLB641(2006)57
- HepMC [Dobbs,Beck-Hansen] CPC134(2001)41
- StdHEP \rightarrow PGS [Conway et al.]
- Rivet [Buckley et al.] arXiv:1003.0694
- HZTool [Waugh et al.] hep-ph/0605034

New physics models, option 1: DIY

Full control over all parameter settings Possible to recycle underlying model (e.g. SM) New model can be supplied as external dynamic library at runtime

Features

- *R*-parity conserving MSSM
- Feynman rules according to [Rosiek] PRD41(1990)3464
- Majorana fermions according to [Denner et al.] NPB387(1992)467
- Spectra and parameters from SLHA files [Skands et al.] JHEP07(2004)036

Validation

- Comparison of O(500) cross sections with MadGraph/MadEvent & Whizard/O'Mega
- Published in [Hagiwara et al.] PRD73(2006)055005 Online at http://sherpa.hepforge.org/susy_comparison/

Built-in models

ADD model of extra dimensions [Arkani-Hamed,Dimopoulos,Dvali] PLB429(1998)263

- Incorporates all 3- and 4-point interactions
- Real and virtual graviton production
- \Rightarrow Helicity formalism for spin-2 particles [Gleisberg et al.] JHEP0309(2003)001

Anomalous EW gauge couplings

- Triple and quartic interactions [Hagiwara et al.] NPB282(1987)253, [Gangemi et al.] hep-ph/0001065
- Unitarization according to [Baur, Zeppenfeld] NPB308(1988)127

Some others

- Higgs portal [Dedes et al.] JHEP11(2008)063
- Hidden Valley
- Axigluon

Sherpa reads FeynRules' generated output files, sets up model on-the-flight **Caution: Only predefined helicity/color building blocks can be used!** i.e. no automated implementation of helicity amplitudes

Sherpa for backgrounds

• $t\overline{t}$ +jets, single-t

jets

Dynamics of multi-particle final state depends on new-physics parameters Precise, fully differential SM background predictions are mandatory!

Example: H_T -spectrum in W+1-jet events, NLO \oplus PS vs. ME \otimes PS

The quest for many jets

Zero'th order approximation: SM background ⇔ event with many jets Sherpa generates these efficiently with Comix [Gleisberg,SH] JHEP12(2008)039

- Build ME from off-shell currents joined by vertices
- Read from right to left!
 → maximal recycling

Performance at tree-level

gg ightarrow ng	Cross section [pb]								
n	8	9	10	11	12				
\sqrt{s} [GeV]	1500	2000	2500	3500	5000				
Comix	0.755(3)	0.305(2)	0.101(7)	0.057(5)	0.026(1)				
PRD67(2003)014026	0.70(4)	0.30(2)	0.097(6)						
NPB539(1999)215	0.719(19)								

Used e.g. for $pp \rightarrow 8j$ [Kilic,Schumann,Son] JHEP04(2009)128

8

Sherpa's traditional strength: **ME**⊗**PS merging** aka CKKW [Catani et al.] JHEP11(2001)063 [Krauss et al.] JHEP05(2009)053

- High multiplicity with ME generator Comix
- Low systematics due to truncated showers
- Can be combined with built-in POWHEG or built-in MC@NLO → MENLOPS

The quest for many jets reloaded

Eventually want to compute high-multiplicity SM backgrounds at NLO

Need
$$\begin{cases} Born term: B = 1 \quad \text{Born term:} \\ Virtual terms: V = \sum 2 \operatorname{Re} \left\{ 1 \quad \text{Born term:} \\ Real terms: R = \sum 1 \quad \text{Born term:} \\ \end{array} \right\} \longrightarrow \textcircled{\begin{tabular}{l}}$$

Singularities in V & R must be removed before MC-integration \rightarrow subtraction

$$\sigma_{\rm NLO} = \int d\Phi_B \left[B + \tilde{V} \right] + \int d\Phi_R R = \int d\Phi_B \left[\left(B + \tilde{V} + I \right) + \int d\Phi_{R|B} \left(R - S \right) \right]$$

Useful idea: Automate and focus on virtual corrections \rightarrow Binoth Les-Houches accord [Binoth at al.] CPC181(2010)1612

The quest for many jets reloaded

BlackHat attacks ever higher multiplicity \rightarrow need efficient subtraction \Rightarrow Comix now extended with Catani-Seymour dipole method [SH]

- Fix CS spectator parton as "final" leg in amplitude
- Recycle subamplitudes from real-radiation process and dipoles simultaneously

Performance for real piece in $pp
ightarrow e^+e^-+$ jets (7 TeV)

σ_{R-S} [pb]	Number of jets							
n k _T -jets	0	1	2	3	4	5		
$p_{Tj} > 30$ GeV, $R{=}0.4$		$\alpha_{ m c}=$ 0.1	$\alpha_{ m c}=$ 0.03	$lpha_{ m c}=$ 0.01	$\alpha_{ m c}=$ 0.003	$\alpha_{\rm c}=$ 0.001		
AMEGIC++/BlackHat	30.6(1)	25.2(3)	16.7(2)	11.5(1)	?	-		
Comix	30.7(1)	25.4(3)	16.3(2)	11.6(1)	5.68(4)	2.00(2)		
Speedup*	0.4	0.5	1.9	1.8	?	-		

*Timing for complete integration (i.e. matrix-element *and* phase-space)

The quest for many jets reloaded

BlackHat⊗Comix is pushing limits:

Four-jet production at NLO [BlackHat] arXiv:1112.3940

- Non-perturbative corrections determined with Sherpa
- Uncertainties from in-house hadronization vs. Lund string

Combining NLO ME with parton showers

Some effort in Sherpa on MC@NLO W+n jets, where $n \le 3$ at present [SH,Krauss,Schönherr,Siegert] arXiv:1201.5882

First color-correct implementation of $\ensuremath{\mathbb{S}}\xspace$ -terms in generic MC@NLO

Now working towards "CKKW@NLO"

Combining NLO ME with parton showers

Features of NLO matching algorithms exemplified: $pp \rightarrow h+j$

Things you can get from Sherpa

- simulation of BSM physics via FeynRules interface
- backgrounds at tree-level with $\mathsf{ME}{\otimes}\mathsf{PS}$
- backgrounds at NLO with MC@NLO

Try it during the tutorial!