Herwig++ & BSM Physics

Andreas Papaefstathiou Institute for Theoretical Physics University of Zürich

MC4BSM

Cornell University, Ithaca, March 22–24, 2012.

Fortran Herwig

- <u>Hadron Emission Reactions With Interfering Gluons.</u>
- First versions: Late 1980's.
- From the Abstract of v5.1 (1991*), described as:
 - "...a general-purpose particle physics event generator, which includes the simulation of hard lepton-lepton, lepton-hadron and hadronhadron collisions in one package [...] uses the parton-shower approach for ISR and FSR QCD radiation, including colour coherence effects and azimuthal correlations both within and between jets'.

Fortran Herwig

• From the same 1991 publication:

Program Summary

Title of the Program: HERWIG

Catalogue Number:

<u>Program obtainable from: CPC Program</u> Library, Queen's University of Belfast, N. Ireland (see application form in this issue).

Computers on which the program is operable: VAX. Only minor modifications are needed to run on any machine running standard FORTRAN 77.

FHerwig Herwig++

<u>2003</u>: Herwig++ v1.0: e⁺e⁻ only.

Motivation: '[...] FHerwig has reached the limit of reasonable maintenance [...]'.

<u>2008</u>: Herwig++ v2.3: Hadron collisions.

'[...] provides a much more flexible structure for further development [...]' &'[...] includes several features more advanced FHerwig.'

<u>2011</u>: Herwig++ v2.5.2: Further development, extensive use in collider experiments.

Hw++: Technical Description

- A general-purpose Monte Carlo event generator for leptonlepton, lepton-hadron, hadron-hadron colliders.
- A complete redesign from ground up w.r.t. FHerwig.
- Based on ThePEG the Toolkit for High Energy Physics
 Event Generation, a framework for implementing Monte
 Carlo event generators.
- ThePEG provides all parts of the event generator infrastructure that <u>do not</u> depend on the physics models.
 A collection of modular building blocks.
- Specific physics models of Herwig++ are implemented on top of these.

SM/BSM physics including correlations between the production and decay of the SM/BSM particles.

cluster model of the hadronization of jets based on non-perturbative gluon splitting Initial/Final-state QCD evolution, taking account soft gluon interference (angular ordering).

SM/BSM physics including correlations between the production and decay of the SM/BSM particles.

cluster model of the hadronization of jets based on non-perturbative gluon splitting

Initial/Final-state QCD evolution, taking account soft gluon interference (angular ordering).

SM/BSM physics including correlations between the production and decay of the SM/BSM particles.

cluster model of the hadronization of jets based on non-perturbative gluon splitting

Initial/Final-state QCD evolution, taking account soft gluon interference (angular ordering).

SM/BSM physics including correlations between the production and decay of the SM/BSM particles.

cluster model of the hadronization of jets based on non-perturbative gluon splitting

Initial/Final-state QCD evolution, taking account soft gluon interference (angular ordering).

SM/BSM physics including correlations between the production and decay of the SM/BSM particles.

cluster model of the hadronization of jets based on non-perturbative gluon splitting

Initial/Final-state QCD evolution, taking account soft gluon interference (angular ordering).

Hadronization

Underlying Event

'Other' Features...

- Full spin correlations between the production and decay of particles (including taus).
- Colour reconnection model (extension of cluster model of hadronization).
- MC@NLO compatibility/POWHEG Matrix Elements.
- New colour evolution method in the Parton Shower for more proper treatment of wide-angle radiation (1103.4811, A. Schofield, M.H. Seymour).
- … + Many more.

event													
8 0 0.	49651	14E-04	0.500000E+03				0.7957747E-01	0.1023679E+00					
-2	-1	Θ	Θ	Θ	501	0	.000000000E+0	0 0.000000000E+00	0.22355011895E+03	0.22355011895E+03	0.0000000000E+00	Θ.	-1.
2	-1	Θ	Θ	502	Θ	0	.000000000E+0	0 0.0000000000E+00	-0.14041414125E+04	0.14041414125E+04	0.0000000000E+00	Θ.	1.
9000008	2	1	2	502	Θ	-0	.15674549041E+0	2 0.40804737723E+02	-0.98365659989E+03	0.11071129113E+04	0.50616990604E+03	Θ.	θ.
-900008	2	1	2	Θ	501	Θ	.15674549041E+0	2 -0.40804737723E+02	-0.19693469370E+03	0.52057862017E+03	0.47990426971E+03	Θ.	Θ.
2	1	3	3	502	Θ	-0	.34214394313E+0	1 -0.19624325218E+03	-0.42456593633E+03	0.46773855365E+03	0.0000000000E+00	θ.	1.
9000006	1	3	3	Θ	Θ	-0	.12253109610E+0	2 0.23704798991E+03	-0.55909066356E+03	0.63937435766E+03	0.19968803406E+03	Θ.	θ.
-2	1	4	4	Θ	501	-0	.98735012733E+0	2 0.17645304792E+02	0.99155735033E+02	0.14103836113E+03	0.0000000000E+00	Θ.	-1.
9000006	1	4	4	Θ	Θ	θ	.11440956177E+0	3 -0.58450042516E+02	-0.29609042873E+03	0.37954025904E+03	0.19968803406E+03	Θ.	θ.
/event>													

construction of

1)Hard-coded Matrix Elements

- An option is to implement the MEs explicitly by hand.
- Tedious even if one has the calculation (e.g. the colour structure may be non-trivial).
- Existing: Mostly Standard Model and LO, some POWHEG processes.

Hard-coded MEs: A sample

×

 $e^+e^- \rightarrow \ell^+\ell^ \circledast e^+e^- \to Z/\gamma \to q\bar{q}$ $e^+e^- \to VH$ $hh \rightarrow \gamma \gamma$ $hh \rightarrow \gamma \text{jet}$ $hh \to QQ$ $hh \to VV$

 $hh \to Z'$

+Transplanckian Scattering (eikonal limit: see hep-ph/0112161)

$$\gamma \gamma \rightarrow WW$$

 $\gamma h \rightarrow \text{jets}$
 $\gg hh \rightarrow H$
 $hh \rightarrow H$
 $hh \rightarrow H$
 $hh \rightarrow H$
 $hh \rightarrow H$

 $\gamma\gamma \to ff$

❀ = also POWHEG V = W or ZH = Higgs Boson h = hadron

SM

BSM

2 Les Houches-accord event files

- Input through Les Houches accord event files, e.g. generated in MadGraph.
- Standard options of the Les Houchesaccord interface: e.g. handles positive and negative weights (e.g. for MC@NLO).
- Showering/Hadronization/Multiple interactions and Analysis, as you would with internal MEs.

3 Automatic construction of 2->2 MEs

Available Models

- Version 2.5.2 (a sample):
 - ADD/UED/RS extra dimensions.
 - SUSY with Les Houches Accord Reader (SLHA): MSSM and NMSSM (e.g. 1111.3365, D. Grellscheid, J. Jaeckel, V. V. Khoze, P. Richardson, C. Wymant)
 - Third-generation leptoquarks (e.g. 1010.3962, B. Gripaios, A.P., K. Sakurai, B. Webber).

Upcoming Model Vertices

- Models for the top-antitop asymmetry@ Tevatron.
- Sextet diquarks (1108.6154, P.Richardson, D. Winn).

• ...+ More.

FeynRules UFO Python interface*

- Automatically converts a model in UFO file format into a Herwig++ model.
- The rest of the machinery remains unchanged:

 Implementation almost complete, some testing required. Soon in a public release!

Output and Analysis

17

- Internal Analyses easy to implement and flexible.
- Interface to HepMC format: online or offline analysis.
- Enables analysis through Rivet. –

Other' Upcoming Features

• Multi-Jet matching via CKKW/MLM.

- More (and automated: MatchBox) NLO processes.
- Dipole Shower.
- ... + More!

Finally...

- Herwig++ provides a <u>modern</u>, <u>flexible</u> framework for both experimentalists and theorists to use in their searches for new physics.
- Download and further info:
 - http://herwig.hepforge.org
- Feedback is very welcome:
 - herwig@projects.hepforge.org

Thanks for your attention.

- Download and further info:
 - http://herwig.hepforge.org
- Feedback is very welcome:
 - herwig@projects.hepforge.org

Supplementary Slides

Colour Reconnection in Herwig++ (I)

- Starting with the clusters that are produced generically by virtue of pre-confinement, the cluster creation procedure is slightly modified.
- This is done by allowing pairs of clusters to be 'reconnected': the coloured constituent of cluster A and the anti-coloured constituent of cluster B form a new cluster, as do the remaining two partons.

Colour Reconnection in Herwig++ (II)

• Algorithm:

- loop over all other existing clusters and choose the one where a reconnection of the two clusters would result in the smallest sum of cluster masses.
- if such a reconnection possibility is found, accept it with certain probability.

FHerwig VS Herwig++ shower

- The Herwig shower includes soft gluon interference effects (colour coherence), via angular ordering of emissions in the PS.
- Herwig++ improves upon the success of FHerwig in a number of ways, e.g.:
 - Covariant formulation of the showering algorithm (invariant under boosts along jet axis).
 - Heavy quark fragmentation through use of massdependent splitting functions/kinematics.