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Download & Installation
• Download
• http://theory.sinp.msu.ru/~pukhov/calchep.html

• Setup CalcHEP directory:
• mkdir physics/CalcHEP
• cp Downloads/calchep_3.2.7.tar.gz  physics/CalcHEP/calchep_3.2.7.tar.gz

• Compile CalcHEP
• cd physics/CalcHEP
• tar xvzf calchep_3.2.7.tar.gz
• cd calchep_3.2.7
• make

• Start CalcHEP
• ./mkUsrDir ../ch_3.2.7
• cd ../ch_3.2.7
• ./calchep &

http://theory.sinp.msu.ru/~pukhov/calchep.html
http://theory.sinp.msu.ru/~pukhov/calchep.html
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Graphical User Interface

• Import Model.
• Check Model.
• Calculate Widths & Branching Ratios.
• Generate Diagrams.
• Generate Numerical Code for processes.
• Compile Numerical Code for Processes.



Edit Model
• Import Model

• Parameters:
• Add/remove independent parameters.
• Change numerical values of independent parameters.

• Constraints:
• Add/remove dependent parameters.
• Change expressions for dependent parameters.

• Particles:
• Add/remove particles.
• Change properties of particles.

• Vertices:
• Add/remove vertices.
• Change coefficient of vertices.
• Change Lorentz structure of vertices.

• Libraries:
• Add/remove external code.
• Add LHAPDF support.

• Check Model



























































Automatic Widths

• Syntax:
• !WH  (The ! means automatic.)
• Don’t forget to comment the width out of the parameters table.

• What is calculated:
• For each particle, all 1→2 decays that are kinematically open are calculated.
• If the calculated width is 0, then all 1→3 decays that are kinematically open 

are calculated.
• If the calculated width is 0, then all 1→4 decays that are kinematically open 

are calculated.





















Libraries

• LHAPDF:
• General PDF’s can be used in the numerical session.
• Will come back to LHAPDF in the numerical session.

• usrfun.c:
• Any kinematical function can be defined and used in cuts and histograms in 

the numerical session.
• Will come back to usrfun.c in the numerical session.

• Dependent parameters:
• Any code required for the calculation of dependent variables can be linked.

















































Numerical Session











































“GI in s-channel”

• Roughly:

• Give all terms a common denominator,

• But when multiplying each squared diagram by a form of 
1, only include the width in the denominator.

• For example, multiply terms without the resonance by:

(p2 −m2)2

(p2 −m2)2 + (mΓ)2

For further details, see:  Nucl. Phys. B375 (1992) 3–44, Phys. Lett. B349 (1995) 367–374 
and Int. J. Mod. Phys. A11 (1996) 5015–5026.





















Kinematics

The above formula expresses a multi-particle volume in terms of two-
particle one, the volumes dΓ(q1, S1) and dΓ(q2, S2) with a reduced number of
particles, and the virtual squared masses s1, s2 of clusters S1, S2.

Recursive application of this formula allows one to express the multi-
particle phase space in terms of two-particle phase space. In its turn the
two-particle phase space is explicitly described by spherical angle Ω of motion
of the first decaying particle in the rest frame of initial state [58].

dΓ(q, [1, 2])

2π
=

kdΩ

4(2π)3
√

q2
, (36)

where k is the absolute value of three-dimensional momentum of outgoing
particles in the rest frame. Thus, applying recursively (35) and (36) to (33)
we obtain an explicit expression for the phase space volume in terms of the
squared masses sj of virtual clusters and the two-dimensional spherical angles
Ωj, where j is an ordinal number of decay:

dΓn(q) =
k1d2Ω1

4(2π)2
√

q2

n−1
∏

j=2

kjd2Ωj

4(2π)3√sj
.
n−1
∏

j=2

dsj (37)

Here kj is a momentum of outgoing clusters produced by decay of the jth

cluster in its center-of-mass.
The expression (37) means some sequential 1->2 decay scheme which

starts from incoming state and finishes with outgoing particles of the pro-
cess. For example, the integration domain for sj parameters depends on this
scheme. Below we present two such schemes for a process with four outgoing
particles:
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In the case of CompHEP project such decay scheme is defined by the
user via the ‘Kinematics’ menu (see Section 5.9).
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Regularization
Basic idea:

The following statements can be proved. In the framework of any ordered
scheme of decays and for any sum P of particle momenta one can find the
decay number j such that either P 2 = sj or P might be represented as Polej +
qj, where qj is the momentum of one of the clusters in the jth decay and Polej

is a polar vector constructed according to the above rule. In other words,
any of poles (4), (5), (6) can be expressed either in terms of sj parameters or
in terms some of cosΘj for an appropriate choice of the polar vector [70, 71].

In CompHEP the ordering is arranged automatically, so that all sub-
decays of the first cluster have smaller numbers than those of the second
cluster. Polar vectors are also constructed automatically according to the
list of peaks prepared by the user.

I.1.3 Smoothing

The general idea of the integrand smoothing is trivial. Let us need to evaluate
∫ b

a
F (x)dx , (39)

and let F (x) have a peak like f(x), where f(x) is a simple symbolically
integrable function in contrast to F (x):

g(x) =
∫ x

a
f(x′)dx′ . (40)

Now we may represent the integral (39) as

∫ b

a
F (x)dx =

∫ g(b)

0
dy

F (g−1(y))

f(g−1(y))
, (41)

where g−1(y) is the inverse function for g(x). The integrand is a smooth
function now.

We face very often squared matrix elements which have several poles in
one of variables. For example, the γ → b, b̄, Z → b, b̄ and H → b, b̄ vir-
tual subprocesses may contribute just to the same amplitude. Although in
this case we can evaluate the integral function g(x) symbolically, the in-
verse function g−1(y) can be computed only as a numerical solution of the
corresponding equation. To bypass the calculation of inverse function Com-
pHEP uses the multi-channel Monte Carlo (branching) method to smooth
a sum of peaks.
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Regularization
Basic idea:

The idea of the branching method is the following. Let F (x) have two
peaks, one is similar to f1(x) and another to f2(x). f1(x) and f2(x) are
singular but elementary functions. Then, instead of one integration (39), we
could perform two ones:

∫

F (x)dx =
∫ F (x)f1(x)

f1(x) + f2(x)
dx +

∫ F (x)f2(x)

f1(x) + f2(x)
dx , (42)

but now each integration has only a single peak! It is easy to extend this
method for an arbitrary number of peaks.

The branching method was used in [72] to separate peaks which came
from various diagrams. In that paper there was also proposed to use the
expression (42) where fi(x) is replaced by αifi(x) with a subsequent search
for optimal coefficients αi. CompHEP passes on this weight optimization to
Vegas, combining two integrals in one Vegas hypercube.

As was mentioned above, CompHEP automatically searches for a polar
vector for each angle integration in order to reach a linear relation between
cosΘ and one of the squared sum of momenta which is responsible for the
peak. It could happen that various peaks need different polar vectors for
the same decay. In this case CompHEP uses the branching method again,
but now for the whole two-dimension sphere integration. In other words, we
use the branching equation (42) where x is the two dimensional sphere angle
[70, 71].

I.2 Adaptive Monte Carlo integration package Vegas

This section contains a short description of the adaptive Monte Carlo pro-
gram VEGAS. See for details [46, 47].

The Monte Carlo method reduces a task of integral evaluation to the task
of mean value calculation. Let g(x) is a density function satisfying

∫

g(x) dx = 1,

then
∫

f(x) dx =
∫

f(x)/g(x) g(x) dx = <f/g> = lim
N→∞

∑

(f(xi)/g(xi))/N,

where points xi are sampled with the probability density g(x) dx.
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Batch Mode

• Batch File:
• Define processes, parameters, energies, cuts, etc. of run.

• Production + Decay:
• Production and decay are connected.
• (Cuts are only applied to production modes.)

• Final output is in an lhe file.

• Parallelization:
• Dynamically splits subprocesses and runs them concurrently.
• Also works with clusters.

• HTML Status:
• Dynamically writes HTML showing current state.











































Batch Mode

• Sasha Belyaev has pushed this batch mode to 
the limit running an E6 MSSM model with 
~6000 production + decay modes on 
thousands of cpus on a pbs cluster, successfully.



In Development



New Numerical Session

• Dynamical Processes and Decays:
• Dynamically add processes and decays.
• Code is dynamically generated and linked.
• Splits processes by order in electric charge (if model is written in the right way).

• Connects Productions and Decays:
• Dynamically connects production and decay modes.
• Cuts are applied to final states (after decay).
• Optionally Breit-Wigner smear resonances.
• Adds cross sections and distributions (after decay).
• Works harder on processes with larger absolute errors.

• Parallelized.









































Future

•Helicity amplitudes.
•Spin correlation.
• Jet matching.
• ...



Appendix



Resonant Diagrams

• Specify resonant diagrams:
• p,p→(~W→(W→j,j),(Z→l,l)),Z→l,l


























