

FeynRules

Claude Duhr

in collaboration with N. Christensen and B. Fuks

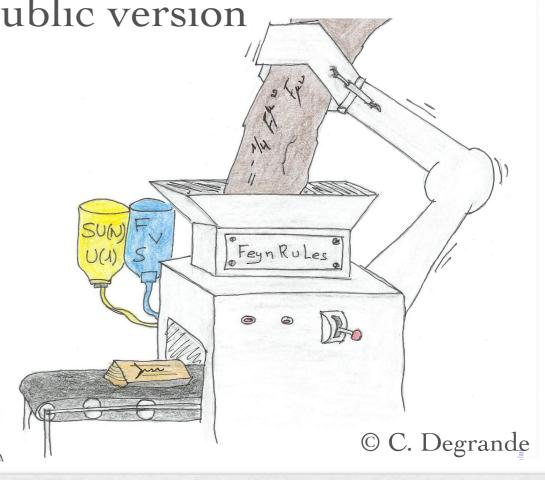
MC4BSM, 22/03/2012

Outline

- FeynRules in a nutshell.
- Recent developments:
 - → Tree-level.
 - → Tools For SUSY.
 - → Automatized validation of models.

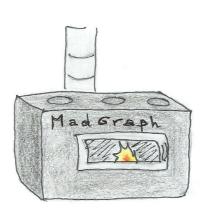
Conclusion and further directions.

- FeynRules is a Mathematica package that allows to derive Feynman rules from a Lagrangian.
- Current public version: 1.6.x, available from http://feynrules.phys.ucl.ac.be
- The only requirements on the Lagrangian are:
 - → All indices need to be contracted (Lorentz and gauge invariance)
 - → Locality
 - → Supported field types: spin 0, 1/2, 1, 2 & ghosts


• FeynRules comes with a set of interfaces, that allow to export the Feynman rules to various matrix element generators.

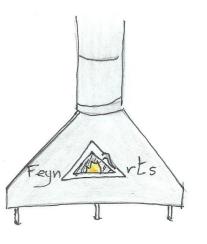
Interfaces coming with current public version

CalcHep / CompHep


→ FeynArts / FormCalc

- → MadGraph
- **→** Sherpa
- → Whizard / Omega

- FeynRules comes with a set of interfaces, that allow to export the Feynman rules to various matrix element generators.
- Interfaces coming with current public version:
 - → CalcHep / CompHep
 - → FeynArts / FormCalc
 - → MadGraph
 - **→** Sherpa
 - → Whizard / Omega



© C. Degrande

• The input requested form the user is twofold.

• The Model File:

Definitions of particles and parameters (e.g., a quark)

```
F[1] ==
{ClassName -> q,
SelfConjugate -> False,
Indices -> {Index[Colour]},
Mass -> {MQ, 200},
Width -> {WQ, 5} }
```

• The Lagrangian:

$$\mathcal{L} = -\frac{1}{4} G^{a}_{\mu\nu} G^{\mu\nu}_{a} + i\bar{q} \gamma^{\mu} D_{\mu} q - M_{q} \bar{q} q$$

L=

- -1/4 FS[G,mu,nu,a] FS[G,mu,nu,a]
- + I qbar.Ga[mu].del[q,mu]
- MQ qbar.q

• Once this information has been provided, FeynRules can be used to compute the Feynman rules for the model:

FeynmanRules[L]

 Once this information has been provided, FeynRules can be used to compute the Feynman rules for the model:

FeynmanRules[L]

Vertex 1

Particle 1 : Vector, G

Particle 2 : Dirac, q^{\dagger}

Particle 3 : Dirac, q

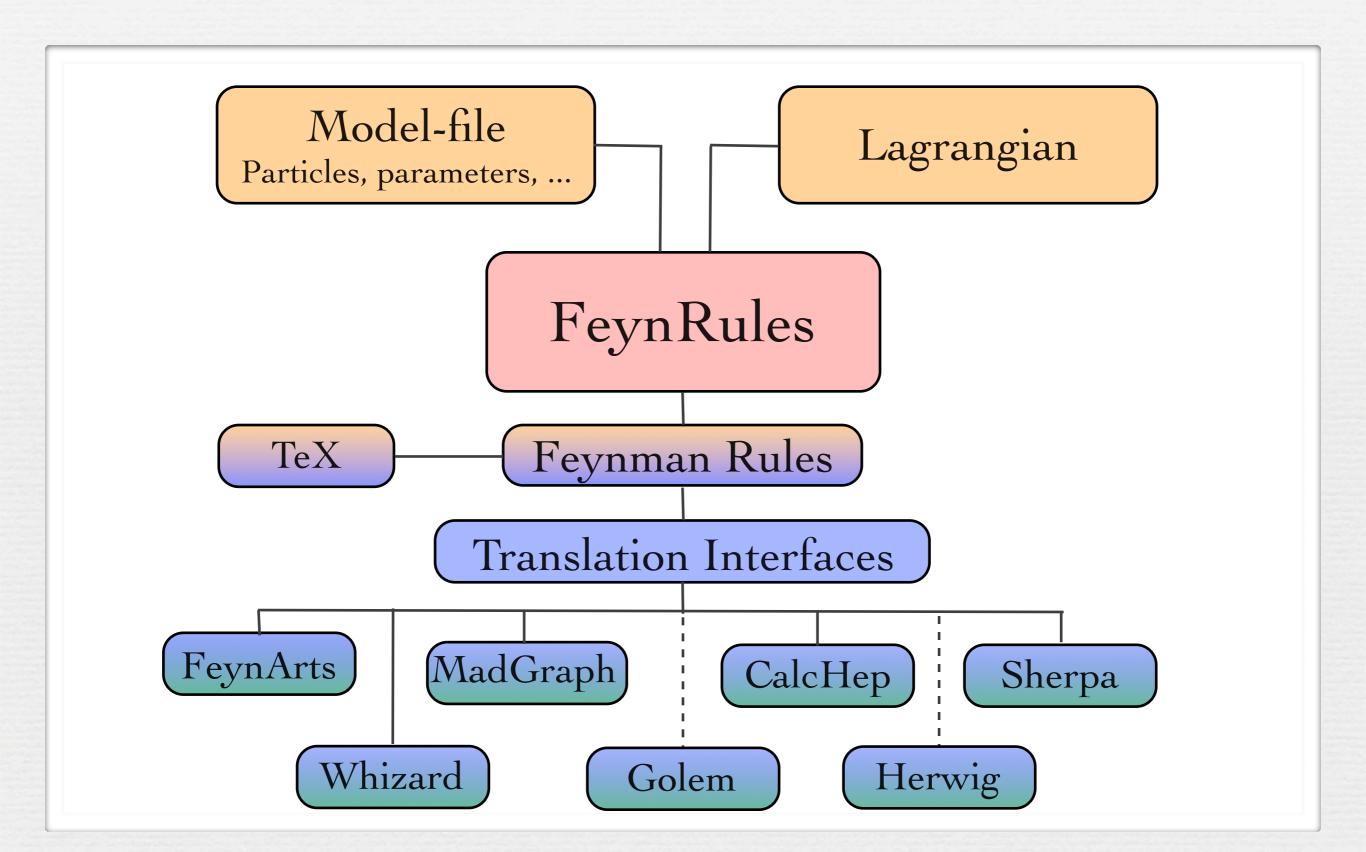
Vertex:

 $i gs \gamma^{\mu_1}_{s_2,s_3} \delta_{f_2,f_3} T^{a_1}_{i_2,i_3}$

• Equivalently, we can export the Feynman rules to a matrix element generator, e.g., for MadGraph 4,

WriteMGOutput[L]

• This produces a set of files that can be directly used in the matrix element generator ("plug 'n' play").


interactions.dat

```
q q G GG QCD
G G G MGVX1 QCD
G G G G MGVX2 QCD QCD
```

particles.dat

couplings.dat

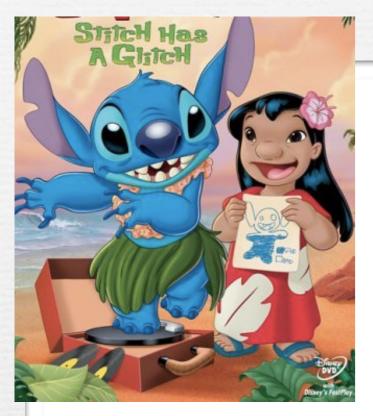
FeynRules

Recent developments:

Tree-level

Higher-dimensional operators

- Even though FeynRules 1.4.x could already compute the Feynman rules for higher-dimensional operators, they were 'useless', in the sense that they could be exported to almost no Monte Carlo code.
- Reason: Most Monte Carlo codes have internal limitations for the vertices:
 - → hardcoded library of color and/or Lorentz structures.
 - → Upper limit on the number of particles enter in a vertex (usually 4).
- To overcome this problem, a joint effort between the FeynRules team and the MC developers was needed!


The Universal FeynRules Output

UFO = Universal FeynRules Output


- Idea: Create Python modules that can be linked to other codes and contain all the information on a given model.
- The UFO is a self-contained Python code, and not tied to a specific matrix element generator.
- The content of the FR model files, together with the vertices, is translated into a library of Python objects, that can be linked to other codes.
- By design, the UFO does not make any assumptions on Lorentz/color structures, or the number of particles.
- GoSam and MadGraph 5 use the UFO as the default model format for BSM.

The UFO & ALOHA

- The development of the UFO goes hand in hand with the development of ALOHA.
- Idea: ALOHA uses the information contained in the UFO to create the (previously-hardcoded) library of Lorentz structures for MadGraph 5 on the fly.
 - → See Olivier Mattelaer's talk.

The UFO & ALOHA

- The development of the UFO goes hand in hand with the development of ALOHA.
- Idea: ALOHA uses the information contained in the UFO to create the (previously-hardcoded) library of Lorentz structures for MadGraph 5 on the fly.
 - → See Olivier Mattelaer's talk.

```
FFV1 = Lorentz(name = 'FFV1',

spins = [ 2, 2, 3 ],

structure = 'Gamma(3,2,1)')
```

The UFO & ALOHA

```
This File is Automatically generated by ALOHA
       The process calculated in this file is:
  Gamma(3,2,1)
   SUBROUTINE FFV1_O(F1,F2,V3,COUP,VERTEX)
   IMPLICIT NONE
  DOUBLE COMPLEX F1(*)
   DOUBLE COMPLEX F2(*)
  DOUBLE COMPLEX V3(*)
  DOUBLE COMPLEX COUP
  DOUBLE COMPLEX VERTEX
   VERTEX = COUP*((F2(1)*((F1(3)*((0,-1)*V3(1)+(0,1)*V3(4)))))
 + (F1(4)*((0,1)*V3(2)+V3(3)))) + (F2(2)*((F1(3)*((0,1)*((0,1)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*((1,0)*
*V3(2)-V3(3))+(F1(4)*((0,-1)*V3(1)+(0,-1)*V3(4))))
+((F2(3)*((F1(1)*((0,-1)*V3(1)+(0,-1)*V3(4)))+(F1(2)*((F1(1)*((0,-1)*V3(1)+(0,-1)*V3(4)))+(F1(2)*((F1(1)*((0,-1)*V3(1)+(0,-1)*V3(4)))+(F1(2)*((F1(1)*((0,-1)*V3(1)+(0,-1)*V3(4)))+(F1(2)*((F1(1)*((0,-1)*V3(1)+(0,-1)*V3(4)))+(F1(2)*((F1(1)*((0,-1)*V3(1)+(0,-1)*V3(4)))+(F1(2)*((F1(1)*((0,-1)*V3(1)+(0,-1)*V3(4)))+(F1(2)*((F1(1)*((0,-1)*V3(1)+(0,-1)*V3(4)))+(F1(2)*((F1(1)*((0,-1)*V3(1)+(0,-1)*V3(4)))+(F1(2)*((F1(1)*((0,-1)*V3(1)+(0,-1)*V3(4)))+(F1(2)*((F1(1)*((0,-1)*V3(1)+(0,-1)*V3(4)))+(F1(2)*((F1(1)*((0,-1)*V3(1)+(0,-1)*V3(1))+(F1(2)*((F1(1)*((0,-1)*V3(1)+(0,-1)*V3(1))+(F1(2)*((F1(1)*((0,-1)*V3(1)+(0,-1)*V3(1))+(F1(2)*((F1(1)*((0,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1)*((i,-1
*((0,-1)*V3(2)-V3(3))))+(F2(4)*((F1(1)*((0,-1)*V3(2)
```

+V3(3))+(F1(2)*((0,-1)*V3(1)+(0,1)*V3(4))))))

END

Spin 3/2 fields

- The development version of FeynRules allows to implement models including spin 3/2 particles.
- Implementation basically ready:
 - Feynman rules can be computed.
 - → Interfaces to CalcHep and MadGraph 5 (UFO) have been updated.
- Currently under testing against independent MadGraph 4 implementation.

 [Hagiwara, Mawatari, Takaesu]

Recent developments:

Tools for SUSY

• FeynRules 1.4.x required the Lagrangian to be written in component fields.

• FeynRules 1.4.x required the Lagrangian to be written in component fields.

$$\mathcal{L} = \Phi^{\dagger} e^{-2gV} \Phi_{|_{\theta^{2}\bar{\theta}^{2}}} + \frac{1}{16g^{2}\tau_{\mathcal{R}}} \operatorname{Tr}(W^{\alpha}W_{\alpha})_{|_{\theta^{2}}} + \frac{1}{16g^{2}\tau_{\mathcal{R}}} \operatorname{Tr}(\bar{W}_{\dot{\alpha}}\bar{W}^{\dot{\alpha}})_{|_{\bar{\theta}^{2}}} + W(\Phi)_{|_{\theta^{2}}} + W^{\star}(\Phi^{\dagger})_{|_{\bar{\theta}^{2}}} + \mathcal{L}_{\operatorname{soft}}$$

• FeynRules 1.4.x required the Lagrangian to be written in component fields.

$$\mathcal{L} = \Phi^{\dagger} e^{-2gV} \Phi_{|_{\theta^{2}\bar{\theta}^{2}}} + \frac{1}{16g^{2}\tau_{\mathcal{R}}} \text{Tr}(W^{\alpha}W_{\alpha})_{|_{\theta^{2}}} + \frac{1}{16g^{2}\tau_{\mathcal{R}}} \text{Tr}(\bar{W}_{\dot{\alpha}}\bar{W}^{\dot{\alpha}})_{|_{\bar{\theta}^{2}}} + W(\Phi)_{|_{\theta^{2}}} + W^{*}(\Phi^{\dagger})_{|_{\bar{\theta}^{2}}} + \mathcal{L}_{\text{soft}}$$

- 'Monte Carlo description':
 - Express superfields in terms of component fields.
 - Express everything in terms of 4-component fermions (beware of the Majoranas!).
 - → Integrate out D and F terms.

FeynRules 1.6.x allows to define superfields directly:

- The F term does not need to be defined, but is added automatically.
- Once the superfields (and their component fields) have been defined, FeynRules takes care of the rest.

• The development version of FeynRules allows to extract the one-loop renormalization group equations for generic SUSY models.

- The development version of FeynRules allows to extract the one-loop renormalization group equations for generic SUSY models.
- Starting from the superspace action, the RGE's are simply obtained via

RGE[LSoft, SuperW]

- The development version of FeynRules allows to extract the one-loop renormalization group equations for generic SUSY models.
- Starting from the superspace action, the RGE's are simply obtained via

RGE[LSoft, SuperW]

$$\frac{\mathrm{d}\mu}{\mathrm{d}t} = \mu \left[-\frac{3g'^2}{80\pi^2} - \frac{3g_w^2}{16\pi^2} + \frac{3}{16\pi^2} \mathrm{Tr} \left[\mathbf{y}^{\mathbf{d}^{\dagger}} \mathbf{y}^{\mathbf{d}} \right] + \frac{3}{16\pi^2} \mathrm{Tr} \left[\mathbf{y}^{\mathbf{u}^{\dagger}} \mathbf{y}^{\mathbf{u}} \right] + \frac{1}{16\pi^2} \mathrm{Tr} \left[\mathbf{y}^{\mathbf{e}^{\dagger}} \mathbf{y}^{\mathbf{e}} \right] \right]$$

$$\frac{\mathrm{d}b}{\mathrm{d}t} = b \left[-\frac{3g'^2}{80\pi^2} - \frac{3g_w^2}{16\pi^2} + \frac{3}{16\pi^2} \mathrm{Tr} \left[\mathbf{y}^{\mathbf{d}^{\dagger}} \mathbf{y}^{\mathbf{d}} \right] + \frac{3}{16\pi^2} \mathrm{Tr} \left[\mathbf{y}^{\mathbf{u}^{\dagger}} \mathbf{y}^{\mathbf{u}} \right] + \frac{1}{16\pi^2} \mathrm{Tr} \left[\mathbf{y}^{\mathbf{e}^{\dagger}} \mathbf{y}^{\mathbf{e}} \right] \right]$$

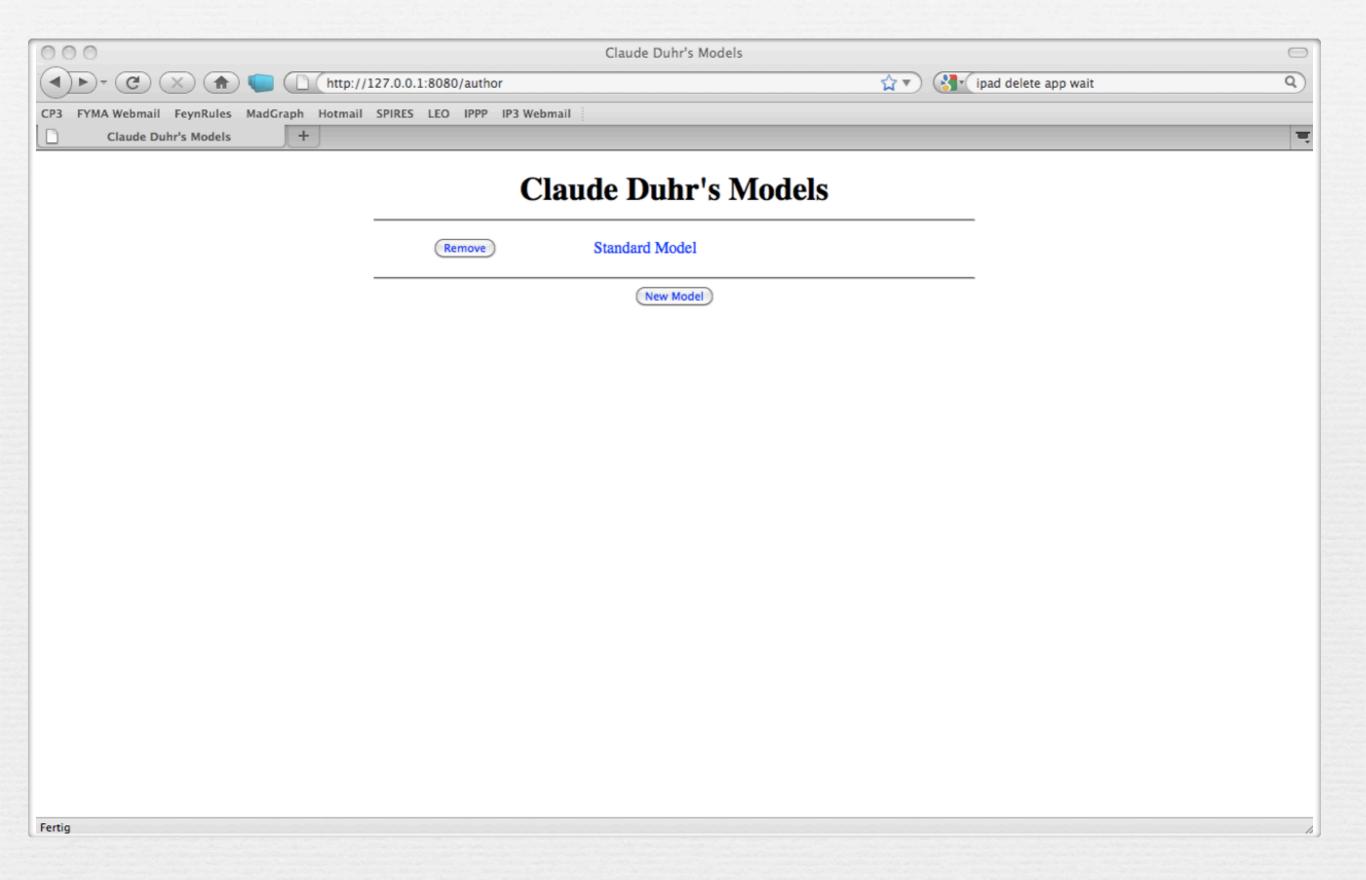
$$+ \mu \left[\frac{3g'^2 M_1}{40\pi^2} + \frac{3g_w^2 M_2}{8\pi^2} + \frac{3}{8\pi^2} \mathrm{Tr} \left[\mathbf{y}^{\mathbf{d}^{\dagger}} \mathbf{T}^{\mathbf{d}} \right] + \frac{3}{8\pi^2} \mathrm{Tr} \left[\mathbf{y}^{\mathbf{u}^{\dagger}} \mathbf{T}^{\mathbf{u}} \right] + \frac{1}{8\pi^2} \mathrm{Tr} \left[\mathbf{y}^{\mathbf{e}^{\dagger}} \mathbf{T}^{\mathbf{e}} \right] \right]$$

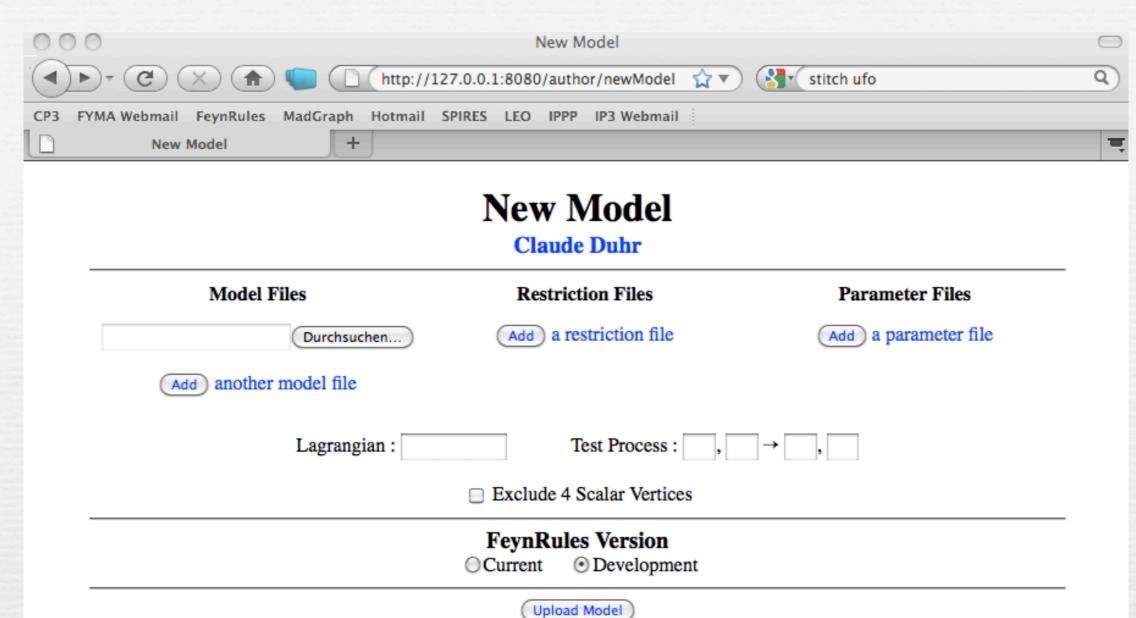
- The development version of FeynRules allows to extract the one-loop renormalization group equations for generic SUSY models.
- Starting from the superspace action, the RGE's are simply obtained via

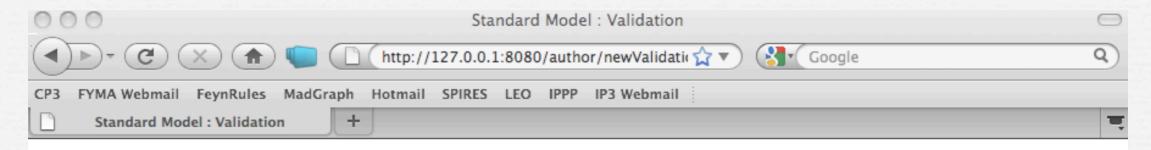
RGE[LSoft, SuperW]

• In parallel, an interface to SuSpect 3 is being developed that allows to input the RGE's obtained by FeynRules into SuSpect to solve them numerically.

WriteSuSpectOutput[LSoft, SuperW]


Recent developments:


Automatized validation of models

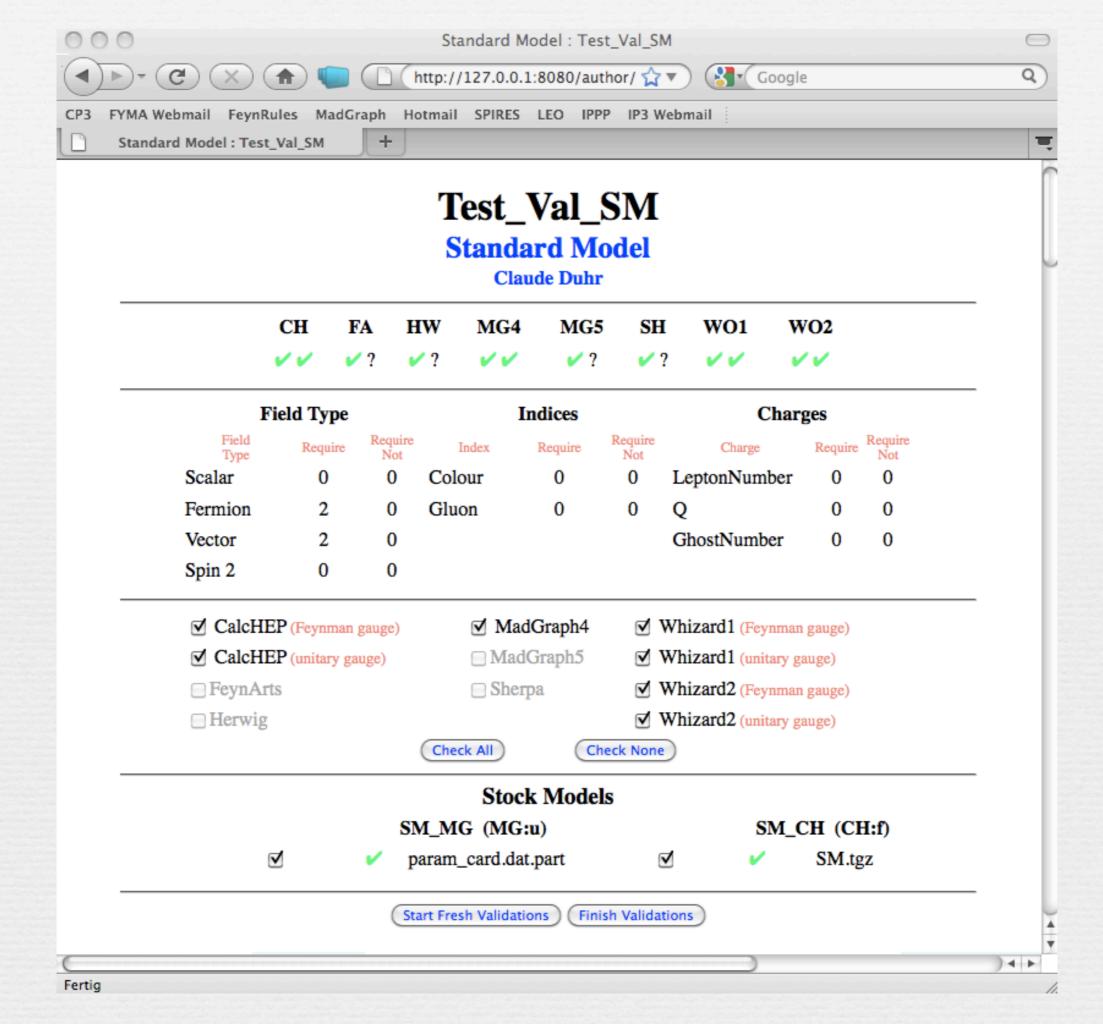

Validation of new models

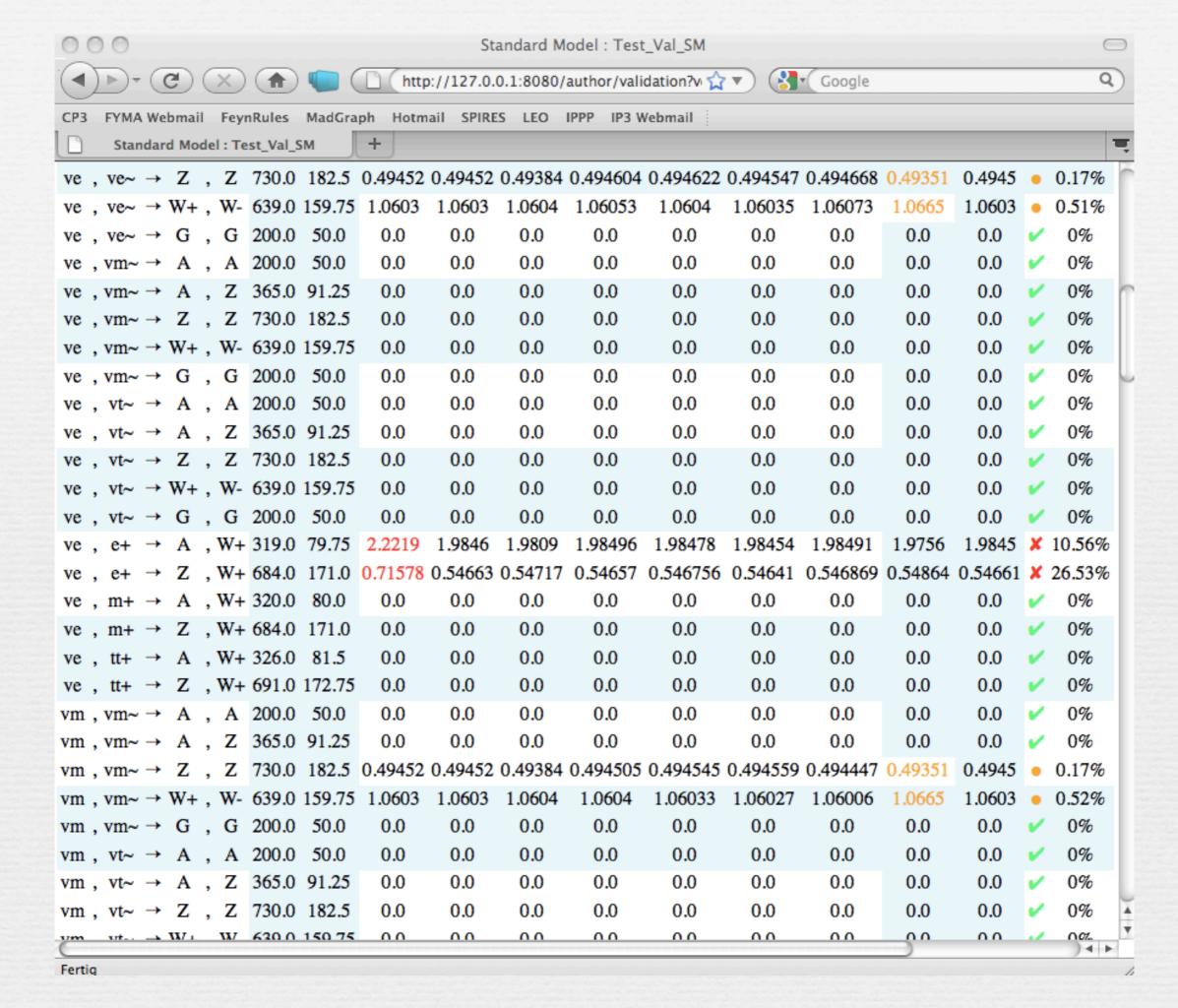
- FeynRules does not only provide the power to develop and validate new models, but also to validate them to an unprecedented level!
- A given model can be output to more than one matrix element generator, and their results can be compared
 - → Different conventions
 - → Different gauges
 - → Different ways of handling large cancellations.
- This procedure can easily be automatized!

Web validation

Standard Model

Claude Duhr


	Validation Name :										
	R. File	P. File	СН	FA	HW	MG4	MG5	SH	WO1	WO2	
•			~	✓?	✓?	~	✓?	✓?	~	V V	
0	Massless.rst		~	✓?	✓?	~~	✓ ?	✓?	~~	VV	
0	DiagonalCKM.rst		~	✓?	✓?	~~	✓?	✓?	~~	VV	


2→2 Processes

Fi	ield Type		Indices		Char	ges
Field Type	Require	Require Index	Require	Require Not	Charge	Require Require Not
Scalar:	0 🕏	0 Colour	0 🕏	0 🕏	Lepton Number:	0 0 0
Fermion:	0 🕏	0 🕏 Gluon:	0 🕏	0 🕏	Q:	0 0 0
Vector:	0 🕏	0 🕏			GhostNumber:	0 0 0
Spin 2:	0 🕏	0 🕏				

Generate Processes

Fertig

A look into the future...

Towards NLO

- We are slowly getting to the point that we have automated tools for NLO computations:
 - **→** Blackhat
 - → GoSam
 - → Helac-NLO
 - → MadLoops
 - **→** Rocket
- Most of these codes only do SM processes so far.
- Reason: Beyond LO, we do not only need tree-level Feynman rules, but also counterterms, etc.
- Future releases of FeynRules will allow to compute also these quantities!

Extraction of counterterms

• The (not public) development version of FeynRules already allows to extract counterterm Feynman rules.

- At the moment, the values of the counterterms for the independent parameters and the fields must still be given by hand.
- Once this is done, GoSam and MadLoops will allow to generate events for any BSM model at NLO.

Conclusion

- The current version of FeynRules comes with a lot of new features:
 - Superfields
 - → UFO & ALOHA
 - Support of color sextets.
 - → Spin 3/2 (will be public soon)
- New development that are in the pipeline:
 - → Susy RGE's
 - → Interface to SuSpect
 - → Web validation platform.
- To download the package and/or model files, have a look at http://feynrules.phys.ucl.ac.be

Backup

We encourage model builders writing order to make them useful to a comm FeynRules model database, please ser

- Image: Ima
- neil@hep.wisc.edu
- ■fuks@cern.ch

Available models

Standard Model
Simple extensions of the SM (9)
Supersymmetric Models (4)
Extra-dimensional Models (4)
Strongly coupled and effective field theories (4)
Miscellaneous (0)

We encourage model builders writing order to make them useful to a comm FeynRules model database, please ser

- Image: Ima
- neil@hep.wisc.edu
- ■fuks@cern.ch

Available models

Stand	lard Model
Simp	le extensions of the SM (9)
Supe	rsymmetric Models (4)
Extra	-dimensional Models (4)
Stron (4)	gly coupled and effective field theories
Misce	llaneous (0)

Model	Contact
Higgs effective theory	C. Duhr
4th generation model	C. Duhr
Standard model + Scalars	C. Duhr
Hidden Abelian Higgs Model	C. Duhr
Hill Model	P. de Aquino, C. Duhr
The general 2HDM	C. Duhr, M. Herquet
Triplet diquarks	J. Alwall, C. Duhr
Sextet diquarks	J. Alwall, C. Duhr
Monotops	B. Fuks
Type III See-Saw Model	C. Biggio, F. Bonnet
DY SM extension	N. Christensen

We encourage model builders writing order to make them useful to a comm FeynRules model database, please ser

- Image: Ima
- neil@hep.wisc.edu
- Image: Market of the second of

Available models

Standard Model

Simple extensions of the SM (9)

Supersymmetric Models (4)

Extra-dimensional Models (4)

Strongly coupled and effective field theories (4)

Miscellaneous (0)

Model	Contact		
MSSM	⊠B. Fuks		
NMSSM	⊠ B. Fuks		
RPV-MSSM	⊠ B. Fuks		
R-MSSM	⊠ B. Fuks		

We encourage model builders writing order to make them useful to a comm FeynRules model database, please ser

- Image: Ima
- neil@hep.wisc.edu
- Image: Market of the second of

Available models

Standard Model

Simple extensions of the SM (9)

Supersymmetric Models (4)

Extra-dimensional Models (4)

Strongly coupled and effective field theories (4)

Miscellaneous (0)

Model	Contact
Mimimal Higgsless Model (3-Site Model)	N. Christensen
Minimal UED	P. de Aquino
Large Extra Dimensions	P. de Aquino
Compact HEIDI	C. Speckner

We encourage model builders writing order to make them useful to a comm FeynRules model database, please ser

- Image: Ima
- neil@hep.wisc.edu
- Image: Market of the second of

Available models

Standard Model	
Simple extensions of the SM (9)	
Supersymmetric Models (4)	
Extra-dimensional Models (4)	
Strongly coupled and effective field (4)	theories
Miscellaneous (0)	

Model	Contact	
Mimimal Higgsless Model (3-Site Model)	N. Christensen	
Chiral perturbation theory	C. Degrande	
Strongly Interacting Light Higgs	C. Degrande	
Technicolor	M. Järvinen, T. Hapola, E. Del Nobile, C. Pica	