6th MC for BSM Workshop, Cornell, Ithaca, March 2012

MC Overview

Count what is Countable Measure what is Measurable

(and keep working up the beam)

$$\mathcal{L} = \bar{\psi}_q^i (i\gamma^\mu) (D_\mu)_{ij} \psi_q^j - m_q \bar{\psi}_q^i \psi_{qi} - \frac{1}{4} F^a_{\mu\nu} F^{a\mu\nu}$$

+ quark masses and value of α_s

"Nothing" Gluon action density: 2.4x2.4x3.6 fm QCD Lattice simulation from D. B. Leinweber, hep-lat/0004025

2,2

Faur

36

 $(D_{\mu})_{ij}\psi_{q}^{j} - m_{q}\bar{\psi}_{q}^{i}\psi_{qi} - \frac{1}{4}F^{a}_{\mu\nu}$

"Nothing" Gluon action density: 2.4x2.4x3.6 fm QCD Lattice simulation from D. B. Leinweber, hep-lat/0004025

2,2

 $F^{a\mu\nu}$

462

 $(D_{\mu})_{ij} \psi_q^j - m_q \overline{\psi}_q^i \psi_{qi} - \frac{1}{A} F_{\mu}^a$

Perturbation Theory

Perturbation Theory

- ► Who needs QCD? I'll use leptons
 - Sum inclusively over all QCD
 - Leptons almost IR safe by definition
 - WIMP-type DM, Z', EWSB \rightarrow may get some leptons

- ► Who needs QCD? I'll use leptons
 - Sum inclusively over all QCD
 - Leptons almost IR safe by definition
 - WIMP-type DM, Z', EWSB \rightarrow may get some leptons
 - Beams = hadrons for next decade (RHIC / Tevatron / LHC)
 - At least need well-understood PDFs
 - High precision = higher orders \rightarrow enter QCD (and more QED)
 - Isolation → indirect sensitivity to QCD
 - Fakes → indirect sensitivity to QCD

- ► Who needs QCD? I'll use leptons
 - Sum inclusively over all QCD
 - Leptons almost IR safe by definition
 - WIMP-type DM, Z', EWSB \rightarrow may get some leptons
 - Beams = hadrons for next decade (RHIC / Tevatron / LHC)
 - At least need well-understood PDFs
 - High precision = higher orders \rightarrow enter QCD (and more QED)
 - Isolation → indirect sensitivity to QCD
 - Fakes → indirect sensitivity to QCD
 - Not everything gives leptons
 - Need to be a lucky chicken ...

- Who needs QCD? I'll use leptons
 - Sum inclusively over all QCD
 - Leptons almost IR safe by definition
 - WIMP-type DM, Z', EWSB \rightarrow may get some leptons
 - Beams = hadrons for next decade (RHIC / Tevatron / LHC)
 - At least need well-understood PDFs
 - High precision = higher orders \rightarrow enter QCD (and more QED)
 - Isolation → indirect sensitivity to QCD
 - Fakes → indirect sensitivity to QCD
 - Not everything gives leptons
 - Need to be a lucky chicken ...

The unlucky chicken

• Put all its eggs in one basket and didn't solve QCD

- ► Who needs QCD? I'll use leptons
 - Sum inclusively over all QCD
 - Leptons almost IR safe by definition
 - WIMP-type DM, Z', EWSB \rightarrow may get some leptons
 - Beams = hadrons for next decade (RHIC / Tevatron / LHC)
 - At least need well-understood PDFs
 - High precision = higher orders \rightarrow enter QCD (and more QED)
 - Isolation → indirect sensitivity to QCD
 - Fakes → indirect sensitivity to QCD
 - Not everything gives leptons
 - Need to be a lucky chicken ...

The unlucky chicken

• Put all its eggs in one basket and didn't solve QCD

Monte Carlo Generators

Calculate Everything \approx solve QCD \rightarrow requires compromise!

Improve Born-level perturbation theory, by including the `most significant' corrections \rightarrow complete events \rightarrow any observable you want

Monte Carlo Generators

Calculate Everything \approx solve QCD \rightarrow requires compromise!

Improve Born-level perturbation theory, by including the `most significant' corrections \rightarrow complete events \rightarrow any observable you want

- 1. Parton Showers
- 2. Matching
- 3. Hadronisation
- 4. The Underlying Event

- 1. Soft/Collinear Logarithms
- 2. Finite Terms, "K"-factors
- **3.** Power Corrections (more if not IR safe)

(+ many other ingredients: resonance decays, beam remnants, Bose-Einstein, ...)

4. ?

Main Workhorses

HERWIG, PYTHIA and SHERPA intend to offer a convenient framework for LHC physics studies, but with slightly different emphasis:

- PYTHIA (successor to JETSET, begun in 1978):
- originated in hadronization studies: the Lund string
- leading in development of multiple parton interactions
- pragmatic attitude to showers & matching
- the first multipurpose generator: machines & processes

HERWIG (successor to EARWIG, begun in 1984):

- originated in coherent-shower studies (angular ordering)
- cluster hadronization & underlying event pragmatic add-on
- large process library with spin correlations in decays

SHERPA (APACIC++/AMEGIC++, begun in 2000):

- own matrix-element calculator/generator
- extensive machinery for CKKW matching to showers
- PYTHIA-like MPI model + HERWIG-like hadronization model

Main Workhorses

HERWIG, PYTHIA and SHERPA intend to offer a convenient framework for LHC physics studies, but with slightly different emphasis:

- PYTHIA (successor to JETSET, begun in 1978):
- originated in hadronization studies: the Lund string
- leading in development of multiple parton interactions
- pragmatic attitude to showers & matching
- the first multipurpose generator: machines & processes

HERWIG (successor to EARWIG, begun in 1984):

- originated in coherent-shower studies (angular ordering)
- cluster hadronization & underlying event pragmatic add-on
- large process library with spin correlations in decays

SHERPA (APACIC++/AMEGIC++, begun in 2000):

- own matrix-element calculator/generator
- extensive machinery for CKKW matching to showers
- PYTHIA-like MPI model + HERWIG-like hadronization model

+ Emerging serious tool: WHIZARD (OMEGA)

Charges Stopped

Charges Stopped

Associated field (fluctuations) continues

9

Charges Stopped

Associated field (fluctuations) continues

9

ISR

Charges Stopped

ISR

The harder they stop, the harder the fluctations that continue to become strahlung

Conformal QCD (a.k.a. Bjorken scaling)

Rate of bremsstrahlung jets mainly depends on the RATIO of the jet $p_{\rm T}$ to the "hard scale"

Computing Bremsstrahlung

1. Fixed-order QCD

Perturbation theory must be valid $\rightarrow \alpha_s$ must be small $\rightarrow All Q_i \gg \Lambda_{QCD}$

Single-scale: abensence of enhancements from soft/collinear singular (conformal) dynamics \rightarrow All Q_i/Q_j \approx 1

 \rightarrow All resolved scales >> Λ_{QCD} **AND** no large hierarchies

Fixed-Order QCD

All resolved scales >> Λ_{QCD} AND no large hierarchies

Trivially untrue for QCD

We're colliding, and observing, hadrons \rightarrow small scales We want to consider high-scale processes \rightarrow large scale differences

→ A Priori, no perturbatively calculable observables in hadron-hadron collisions

Resummed QCD

All resolved scales >> Λ_{QCD} AND no large hierarchies

Trivially untrue for QCD

We're colliding, and observing, hadrons \rightarrow small scales We want to consider high-scale processes \rightarrow large scale differences

\rightarrow A Priori, no perturbatively calculable observables in hadron-hadron collisions

 \rightarrow Initial-State Showers in MC

 \rightarrow Final-State Showers (+ hadronization) in MC

Resummed QCD

All resolved scales >> Λ_{QCD} AND no large hierarchies

Trivially untrue for QCD

We're colliding, and observing, hadrons \rightarrow small scales We want to consider high-scale processes \rightarrow large scale differences

$$\frac{\mathrm{d}\sigma}{\mathrm{d}X} = \sum_{a,b} \sum_{f} \int_{\hat{X}_{f}} f_{a}(x_{a}, Q_{i}^{2}) f_{b}(x_{b}, Q_{i}^{2}) \frac{\mathrm{d}\hat{\sigma}_{ab \to f}(x_{a}, x_{b}, f, Q_{i}^{2}, Q_{f}^{2})}{\mathrm{d}\hat{X}_{f}} D(\hat{X}_{f} \to X, Q_{i}^{2}, Q_{f}^{2})$$

PDFs: needed to compute inclusive cross sections → Initial-State Showers in MC FFs: needed to compute (semi-)exclusive cross sections → Final-State Showers (+ hadronization) in MC

Resummed QCD

All resolved scales >> Λ_{QCD} **AND** no large hierarchies

Trivially untrue for QCD

We're colliding, and observing, hadrons \rightarrow small scales We want to consider high-scale processes \rightarrow large scale differences

$$\frac{\mathrm{d}\sigma}{\mathrm{d}X} = \sum_{a,b} \sum_{f} \int_{\hat{X}_{f}} f_{a}(x_{a}, Q_{i}^{2}) f_{b}(x_{b}, Q_{i}^{2}) \frac{\mathrm{d}\hat{\sigma}_{ab \to f}(x_{a}, x_{b}, f, Q_{i}^{2}, Q_{f}^{2})}{\mathrm{d}\hat{X}_{f}} D(\hat{X}_{f} \to X, Q_{i}^{2}, Q_{f}^{2})$$

PDFs: needed to compute
inclusive cross sections
→ Initial-State Showers in MC

FFs: needed to compute (semi-)exclusive cross sections → Final-State Showers (+ hadronization) in MC

All resolved scales >> Λ_{QCD} **AND** X Infrared Safe

$$\mathrm{d}\sigma_{X+1} \sim 2g^2 \mathrm{d}\sigma_X \frac{\mathrm{d}s_{a1}}{s_{a1}} \frac{\mathrm{d}s_{1b}}{s_{1b}}$$

$$\mathrm{d}\sigma_{X+1} \sim 2g^2 \mathrm{d}\sigma_X \frac{\mathrm{d}s_{a1}}{s_{a1}} \frac{\mathrm{d}s_{1b}}{s_{1b}}$$

$$\mathrm{d}\sigma_{X+1} \sim 2g^2 \mathrm{d}\sigma_X \frac{\mathrm{d}s_{a1}}{s_{a1}} \frac{\mathrm{d}s_{1b}}{s_{1b}}$$

$$\mathrm{d}\sigma_{X+2} \sim 2g^2 \mathrm{d}\sigma_{X+1} \frac{\mathrm{d}s_{a2}}{s_{a2}} \frac{\mathrm{d}s_{2b}}{s_{2b}}$$

$$\mathrm{d}\sigma_{X+1} \sim 2g^2 \mathrm{d}\sigma_X \frac{\mathrm{d}s_{a1}}{s_{a1}} \frac{\mathrm{d}s_{1b}}{s_{1b}}$$

$$\mathrm{d}\sigma_{X+2} \sim 2g^2 \mathrm{d}\sigma_{X+1} \frac{\mathrm{d}s_{a2}}{s_{a2}} \frac{\mathrm{d}s_{2b}}{s_{2b}}$$

$$\mathrm{d}\sigma_X = \dots$$

$$\mathrm{d}\sigma_{X+1} \sim 2g^2 \mathrm{d}\sigma_X \frac{\mathrm{d}s_{a1}}{s_{a1}} \frac{\mathrm{d}s_{1b}}{s_{1b}}$$

$$\mathrm{d}\sigma_{X+2} \sim 2g^2 \mathrm{d}\sigma_{X+1} \frac{\mathrm{d}s_{a2}}{s_{a2}} \frac{\mathrm{d}s_{2b}}{s_{2b}}$$

$$\mathrm{d}\sigma_{X+3} \sim 2g^2 \mathrm{d}\sigma_{X+2} \frac{\mathrm{d}s_{a3}}{s_{a3}} \frac{\mathrm{d}s_{3b}}{s_{3b}}$$

$$\mathrm{d}\sigma_X = \dots \xrightarrow{\overset{\mathrm{e}^{\mathrm{e}^{\mathrm{t}}}}{\overset{\mathrm{f}^{\mathrm{t}}}}{\overset{\mathrm{f}^{\mathrm{t}}}{\overset{\mathrm{f}^{\mathrm{t}}}}}\overset{\mathrm{f}^{\mathrm{t}}}{\overset{\mathrm{f}^{\mathrm{t}}}}{\overset{\mathrm{f}^{\mathrm{t}}}}{\overset{\mathrm{f}^{\mathrm{t}}}}{\overset{\mathrm{f}^{\mathrm{t}}}}}\overset{\mathrm{f}^{\mathrm{t}}}{\overset{\mathrm{f}^{\mathrm{t}}}}}\overset{\mathrm{f}^{\mathrm{t}}}{\overset{\mathrm{f}^{\mathrm{t}}}}}\overset{\mathrm{f}^{\mathrm{t}}}{\overset{\mathrm{f}^{\mathrm{t}}}}}\overset{\mathrm{f}^{\mathrm{t}}}{\overset{\mathrm{f}^{\mathrm{t}}}}}}\overset{\mathrm{f}^{\mathrm{t}}}{\overset{\mathrm{f}^{\mathrm{t}}}}}\overset{\mathrm{f}^{\mathrm{t}}}}{\overset{\mathrm{f}^{\mathrm{t}}}}}\overset{\mathrm{f}^{\mathrm{t}}}}{\overset{\mathrm{f}^{\mathrm{t}}}}}\overset{\mathrm{f}^{\mathrm{t}}}}{\overset{\mathrm{f}^{\mathrm{t}}}}}}\overset{\mathrm{f}^{\mathrm{t}}}}{\overset{\mathrm{f}^{\mathrm{t}}}}}\overset{\mathrm{f}^{\mathrm{t}}}}{\overset{\mathrm{f}^{\mathrm{t}}}}}}\overset{\mathrm{f}^{\mathrm{t}}}}{\overset{\mathrm{f}^{\mathrm{t}}}}}\overset{\mathrm{f}^{\mathrm{t}}}}{}}\overset{\mathrm{f}^{\mathrm{t}}}}}\overset{\mathrm{f}^{\mathrm{t}}}}{\overset{\mathrm{f}^{\mathrm{t}}}}}\overset{\mathrm{f}^{\mathrm{t}}}}{\overset{\mathrm{f}^{\mathrm{t}}}}}\overset{\mathrm{f}^{\mathrm{t}}}}}\overset{\mathrm{f}^{\mathrm{t}}}}{\overset{\mathrm{f}^{\mathrm{t}}}}}\overset{\mathrm{f}^{\mathrm{t}}}}}\overset{\mathrm{f}^{\mathrm{t}}}}{}}\overset{\mathrm{f}^{\mathrm{t}}}}}\overset{\mathrm{f}^{\mathrm{t}}}}{}}\overset{\mathrm{f}^{\mathrm{t}}}}{\overset{\mathrm{f}^{\mathrm{t}}}}}\overset{\mathrm{f}^{\mathrm{t}}}}}{\overset{\mathrm{f}^{\mathrm{t}}}}}\overset{\mathrm{f}^{\mathrm{t}}}}}$$
}

$$\mathrm{d}\sigma_{X+1} \sim 2g^2 \mathrm{d}\sigma_X \frac{\mathrm{d}s_{a1}}{s_{a1}} \frac{\mathrm{d}s_{1b}}{s_{1b}}$$

$$\mathrm{d}\sigma_{X+2} \sim 2g^2 \mathrm{d}\sigma_{X+1} \frac{\mathrm{d}s_{a2}}{s_{a2}} \frac{\mathrm{d}s_{2b}}{s_{2b}}$$

$$\mathrm{d}\sigma_{X+3} \sim 2g^2 \mathrm{d}\sigma_{X+2} \frac{\mathrm{d}s_{a3}}{s_{a3}} \frac{\mathrm{d}s_{3b}}{s_{3b}}$$

This gives an approximation to infinite-order tree-level cross sections (here "DLA")

$$\mathrm{d}\sigma_X = \dots \xrightarrow{\overset{e^+}{\sim}}_{\overset{e^-}{\sim}} \xrightarrow{\overset{e^+}{\sim}}_{\overset{e^-}{\sim}} \xrightarrow{\overset{e^+}{\sim}}$$

$$\mathrm{d}\sigma_{X+1} \sim 2g^2 \mathrm{d}\sigma_X \frac{\mathrm{d}s_{a1}}{s_{a1}} \frac{\mathrm{d}s_{1b}}{s_{1b}}$$

$$\mathrm{d}\sigma_{X+2} \sim 2g^2 \mathrm{d}\sigma_{X+1} \frac{\mathrm{d}s_{a2}}{s_{a2}} \frac{\mathrm{d}s_{2b}}{s_{2b}}$$

$$\mathrm{d}\sigma_{X+3} \sim 2g^2 \mathrm{d}\sigma_{X+2} \frac{\mathrm{d}s_{a3}}{s_{a3}} \frac{\mathrm{d}s_{3b}}{s_{3b}}$$

This gives an approximation to infinite-order tree-level cross sections (here "DLA")

But something is not right ...

Total cross section would be infinite ...

Loops and Legs

Resummation

Unitarity

KLN: Virt = -Int(Tree) + FIn LL showers : neglect F $\mathrm{d}\sigma_X = \dots \xrightarrow{e^{\mathsf{t}}}_{e^{\mathsf{t}}} \underbrace{\mathsf{d}}_{e^{\mathsf{t}}} \underbrace{\mathsf{d}}_{e^{\mathsf{$

$$\mathrm{d}\sigma_{X+1} \sim 2g^2 \mathrm{d}\sigma_X \frac{\mathrm{d}s_{a1}}{s_{a1}} \frac{\mathrm{d}s_{1b}}{s_{1b}}$$

$$\mathrm{d}\sigma_{X+2} \sim 2g^2 \mathrm{d}\sigma_{X+1} \frac{\mathrm{d}s_{a2}}{s_{a2}} \frac{\mathrm{d}s_{2b}}{s_{2b}}$$

$$\mathrm{d}\sigma_{X+3} \sim 2g^2 \mathrm{d}\sigma_{X+2} \frac{\mathrm{d}s_{a3}}{s_{a3}} \frac{\mathrm{d}s_{3b}}{s_{3b}}$$

Imposed by Event evolution:

When (X) branches to (X+I): Gain one (X+I). Loose one (X). $\sigma_{X+1}(Q) = \sigma_{X;incl} - \sigma_{X;excl}(Q)$

→ includes both real and virtual corrections (in LL approx)

Bootstrapped pQCD

Bootstrapped pQCD

Matching

► A (Complete Idiot's) Solution – Combine

- 1. [X]_{ME} + showering
- 2. [X + 1 jet]_{ME} + showering
- 3. ...

Run generator for X (+ shower) Run generator for X+1 (+ shower) Run generator for ... (+ shower) Combine everything into one sample

Matching

Run generator for X (+ shower)

Run generator for X+1 (+ shower)

Run generator for ... (+ shower)

Combine everything into one sample

► A (Complete Idiot's) Solution – Combine

- 1. [X]_{ME} + showering
- 2. [X + 1 jet]_{ME} + showering 3. ...

Doesn't work

- [X] + shower is inclusive
- [X+1] + shower is also inclusive

• Shower off X already contains LL part of all X+n

$$\mathrm{d}\sigma_{X+1} \sim 2g^2 \mathrm{d}\sigma_X \frac{\mathrm{d}s_{a1}}{s_{a1}} \frac{\mathrm{d}s_{1b}}{s_{1b}}$$

 Adding back full ME for X+n would be overkill

 Shower off X already contains LL part of all X+n

$$\mathrm{d}\sigma_{X+1} \sim 2g^2 \mathrm{d}\sigma_X \frac{\mathrm{d}s_{a1}}{s_{a1}} \frac{\mathrm{d}s_{1b}}{s_{1b}}$$

 Adding back full ME for X+n would be overkill

Solution I: "Additive" (most widespread) Add event samples, with modified weights $w_X = |M_X|^2$ + Shower $w_{X+1} = |M_{X+1}|^2 - Shower\{w_X\}$ + Shower $w_{X+n} = |M_{X+n}|^2 - Shower\{w_X, w_{X+1}, ..., w_{X+n-1}\}$ + Shower Only CKKW and MLM

HERWIG: for X+I @ LO (Shower = 0 in dead zone of angular-ordered shower)

MC@NLO: for X+I @ LO and X @ NLO (note: correction can be negative)

CKKW & MLM : for all X+n @ LO (force Shower = 0 above "matching scale" and add ME there) SHERPA (CKKW), ALPGEN (MLM + HW/PY), MADGRAPH (MLM + HW/PY), PYTHIA8 (CKKW-L from LHE files), ...

• Shower off X already contains LL part of all X+n

$$\mathrm{d}\sigma_{X+1} \sim 2g^2 \mathrm{d}\sigma_X \frac{\mathrm{d}s_{a1}}{s_{a1}} \frac{\mathrm{d}s_{1b}}{s_{1b}}$$

 Adding back full ME for X+n would be overkill

 Shower off X already contains LL part of all X+n

 Adding back full ME for X+n would be overkill

SPEED : milliseconds / Event

MS/EVENT	Matched through:				
Monte Carlo	Strategy	Z→3	Z→4	Z→5	Z→6
Pythia 8 Initialization time ~ 0	TS	0.22	$Z \rightarrow qq (q=udscb) + shower.$ Matched and unweighted. Hadronization off gfortran/g++ with gcc v.4.4 -O2 on single 3.06 GHz processor with 4GB memory		
Vincia (sector, Q _{match} = 5 GeV) Initialization time ~ 0	GKS	0.26	0.50	1.40	6.70
Sherpa (Q _{match} = 5 GeV)	CKKW (expect similar	5.15*	53.00*	220.00*	400.00*
Initialization time =	scaling for MLM)	1.5 minutes	7 minutes	22 minutes	2.2 hours

Generator Versions: Pythia 6.425 (Perugia 2011 tune), Pythia 8.150, Sherpa 1.3.0, Vincia 1.026 (without uncertainty bands, NLL/NLC=OFF)

<u>Efficient Matching with Sector Showers</u> J. Lopez-Villarejo & PS : JHEP 1111 (2011) 150

Additional Sources of Particle Production

Multiple (perturbative) parton-parton Interactions occurring in each single hadron-hadron collision → underlying event (distinct from pile-up caused by high lumi)

Additional Sources of Particle Production

 $Q_{F} \gg \Lambda_{QCD}$ ME+ISR/FSR + perturbative MPI $Q_{F} \sim \Lambda_{QC}$ $Q_{F} \sim \Lambda_{QC}$

Multiple (perturbative) parton-parton Interactions occurring in each single hadron-hadron collision → underlying event (distinct from pile-up caused by high lumi)

Need-to-know issues for IR sensitive quantities (e.g., N_{ch})

The problem:

- Given a set of partons resolved at a scale of ~ I GeV (the shower + MPI cutoff), need a "mapping" from this set onto a set of on-shell colour-singlet hadronic states.
- I.e., a fully exclusive fragmentation function defined at $Q_{Had} \sim I \text{ GeV}$

The problem:

- Given a set of partons resolved at a scale of ~ I GeV (the shower + MPI cutoff), need a "mapping" from this set onto a set of on-shell colour-singlet hadronic states.
- I.e., a fully exclusive fragmentation function defined at $Q_{Had} \sim I \text{ GeV}$

MC models do this in three steps

- Map partons onto continuum of highly excited hadronic states (called 'strings' or 'clusters')
- 2. Iteratively map strings/clusters onto **discrete set of primary hadrons** (string breaks / cluster splittings / cluster decays)
- Sequential decays into secondary hadrons (e.g., rho > pi pi, Lambda > n pi0, pi0 > gamma gamma, ...)

The problem:

- Given a set of partons resolved at a scale of ~ I GeV (the shower + MPI cutoff), need a "mapping" from this set onto a set of on-shell colour-singlet hadronic states.
- I.e., a fully exclusive fragmentation function defined at $Q_{Had} \sim I \text{ GeV}$

MC models do this in three steps

- Map partons onto continuum of highly excited hadronic states (called 'strings' or 'clusters')
- 2. Iteratively map strings/clusters onto **discrete set of primary hadrons** (string breaks / cluster splittings / cluster decays)
- Sequential decays into secondary hadrons (e.g., rho > pi pi, Lambda > n pi0, pi0 > gamma gamma, ...)

From Partons to Strings

 $F(r) \approx \text{const} = \kappa \approx 1 \text{ GeV/fm} \iff V(r) \approx \kappa r$

From Partons to Strings

• Motivates a model:

- Separation of transverse and longitudinal degrees of freedom
- Simple description as I+I dimensional worldsheet string with Lorentz invariant formalism

The (Lund) String Model

Map:

- Quarks > String Endpoints
- **Gluons** > Transverse Excitations (kinks)
- Physics then in terms of string worldsheet evolving in spacetime
- Probability of string break constant per unit area > AREA LAW

Gluon = kink on string, carrying energy and momentum

Simple space-time picture Details of string breaks more complicated

Conclusions

- QCD Phenomenology is witnessing a rapid evolution: LO & NLO matching, better showers, tuning, interfaces ...
 - Driven by demand of high precision in complex LHC environment with huge phase space
- BSM Physics
 - Generally relies on chains of tools (MC4BSM)
 - Sufficient to reach O(10%) accuracy, with hard work, though must be careful with scale hierarchies, width effects, decay distributions, ...
 - Next machine is a long way off → must strive to build capacity for yet higher precision, to get max from LHC data.
- Ultimate limit set by solutions to pQCD (getting better) and then the **really** hard stuff
 - Like Hadronization, Underlying Event, Diffraction, ... (& BSM equivalents?)
 - For which fundamentally new ideas may be needed