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The Matrix Element Method (MEM) 

• All measurements of SM parameters and searches for new physics rely on 
matrix elements at some level. 

• The Matrix element contains the maximal amount of theoretical information 
available (for the hard scattering process).

• The goal of the MEM is to perform a measurement using the matrix element 
to create a probability distribution function. 

• Then this can be used to obtain a Likelihood for the model under 
investigation. 

Figure 1: The generation of the Born (and virtual) phase space from a given experimental event.
A given collision will result in the production of a colour neutral final state (represented here by
four leptons in red) which nearly balance in the transverse plane. This is shown on the left hand
side. The resulting imbalance (X, in blue) represents the remaining event which is not modeled in
the Born Matrix Element. We apply a boost such that X is at rest in the transverse plane, the
remaining longitudinal and energy components are absorbed into the colliding partons.

initial state partons. We postpone the treatment of final state jets at NLO to a future

publication. The results we discuss in this paper have been implemented into a publicly

available program NLOME which is based upon MCFM [7].

This paper proceeds as follows, in section ?? we discuss the generation of the NLO

phase space needed to evaluate a NLO matrix element within the MEM framework, we

then discuss the MEM in detail in section ??. In section 4 we validate the code using

MCFM [7] and Pythia [? ]. Sections 5 and 6 provide explicit examples of the method of

current phenomenological interest. Finally in section 7 we draw our conclusions.

2. The Matrix Element Methods at LO, at NLO and in Data

The Matrix Element Method (MEM) uses a theoretical model to predict a likelihood that a

given event x is described by a theoretical model Ω. The probability measure of observing

event x given the theory model Ω is then defined as

P(x|Ω) =
1

σΩ

∫
dx1dx2 dΦ(y)

f(x1)f(x2)

x1x2s
|MΩ(y)|2W (x,y) . (2.1)

Here W (x,y) represents the experimental transfer function which models the probability

density that an experimental event (or set of events) y is measured in the detector as phase

space point (or set of points) x with a normalization
∫
dxW (x,y) = 1. The integration

is over the parton density functions f(x) and the over the phase space Φ(y). SΩ(y) is the

scattering probability for a given model Ω. σΩ is the total cross section (evaluated at a

center of mass energy =
√
s), ensuring that the overall normalisation of the probability

distribution is equal to one.

The MEM then uses this probability density function P(x|Ω) to construct a likelihood

function L relating the data set x to the model Ω.

L(x|Ω) = f(N)
∏

i=1,N

P(xi|Ω). (2.2)
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Pros and cons of the method. 

• Clean separation between theory 
and experimental inputs 

• Utilizes full ME. 

• Many potential applications. 

• Ripe for parallelisation 

Theory input

Experimental input
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• Computationally expensive 

• Need for simplifications: 

• Transfer function form

• LO ME elements 

This talk



An example of the MEM in HEP. 

• Most famous application: Top mass 
measurement! 

• With a large enough data set the Log 
likelihood is quadratic function. 
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FIG. 4: Determination of the top-quark mass using the maximum likelihood method. The points

represent the likelihood of the fit used to extract the top mass, divided by its maximum value,

as a function of the mass of the top quark (after a correction for a −0.5 GeV/c2 mass bias, see

text). The solid line shows a Gaussian fit to the points. The maximum likelihood corresponds to

a mass of 180.1 GeV/c2, which is the new DØ measurement of the top mass in the lepton + jets

channel. The hatched band corresponds to the range of ±1 standard deviation, and indicates the

±3.6 GeV/c2 statistical uncertainty of the fit.
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7 Top Mass Results
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Figure 7: Likelihood as a function of the top quark mass from the fit to the data (left) and the
estimated uncertainty compared to the expectation from MC pseudo-experiments (right), for
the electron+jets (top), muon+jets (middle), and the combined lepton+jets channel (bottom).

The −2 logLsample curves as function of the top quark mass are shown in Fig. 7(left) for the elec-
tron+jets, muon+jets and combined lepton+jets channel. From these (uncalibrated) likelihoods
we extract the fitted mass and its statistical uncertainty. After performing the analysis calibra-
tion described in Section 5 and applying the -0.4 GeV correction for pile-up (see Section 6), the
following results are obtained. From 303 events in the electron+jets channel we extract:

mt = 178.2 ± 3.7(stat) GeV

and from 334 events in the muon+jets channel:

mt = 170.2 ± 2.6(stat) GeV.

The results in the electron+jets and muon+jets channels are statistically consistent. The differ-

CMS:PAS TOP-10-009



Another example of the MEM 

• Slide from David Mietlicki’s Moriond talk: 
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!! CDF: 

!! Template fits based on decay 
product angular distributions 

!! D0:   3! Evidence For Spin Correlations! 

!! New matrix element approach 
!! Significantly increased sensitivity 

!! Likelihood fit based on probabilities 
that events are signal events and do 
(or do not) contain SM spin 
correlation 

Measuring the Spin Correlation 

Moriond 2012 D. Mietlicki 9 

!! Results shown here assume spin quantized along beam axis 

 

! Lep+Jet

CDF
= 0.72 ± 0.69

 

!Combo(Dil,Lep+Jet )

D0
= 0.66 ± 0.23

 

!Dilepton

CDF
= 0.042 ± 0.563

Dilepton 

Lep+Jets 

CDF Conf. Note 10211 

CDF Conf. Note 10719 

PRL 108, 032004 (2012) 

• NB SM 
prediction: 
0.78(4) 



Theoretical MEM tools. 

• Experimentalists have multiple in-house MEM codes (for top mass etc.) using 
various LO MEs. 

• A nice implementation of the MEM for general BSM scenarios has been 
provided at LO in the Madgraph framework. (Artoisenet, Lemaitre, Maltoni, 
Mattelaer 1007.3300). 

• This has also been extended to include some ISR modeling. (Alwall, Freitas, 
Mattelaer 1010.2263). 

• Would be nice to have the situation where we can have NLO background + 
LO BSM signal 

• Providing the NLO background is the goal of this work! 



Experimental events versus fixed order weights. 

How can we relate an experimental event to 
our theoretical model? 

Experimental events are unbalanced (for 
the LO final state), LO events have exact 
balance. 



Going to the MEM frame

• We can cluster all of the event which is not in the Born final state into one 
vector X. 

•  One can perform an Lorentz boost to the frame in which X is at rest in the 
transverse plane. 

• This frame is the MEM frame. 

• Now we have a Born final state, and X is in the longitudinal direction. 

Figure 1: The generation of the Born (and virtual) phase space from a given experimental event.
A given collision will result in the production of a colour neutral final state (represented here by
four leptons in red) which nearly balance in the transverse plane. This is shown on the left hand
side. The resulting imbalance (X, in blue) represents the remaining event which is not modeled in
the Born Matrix Element. We apply a boost such that X is at rest in the transverse plane, the
remaining longitudinal and energy components are absorbed into the colliding partons.
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Welcome to the MEM frame.

• This boost CANNOT be avoided, if we give the LO Matrix element an 
unbalanced phase space point, we can produce any number we like! 

• However, since the boost is not unique, we had better integrate over allowed 
boosts, the resulting weight is made up of two pieces, 

• Of these, only the “luminosity function” depends on the boost, 
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Note that the single particle rapidity depends on the parton fraction values. This quantity

is not boost invariant and therefore not a particular useful observable. However, the boost

invariant rapidity difference is expressible in terms of invariants.

At NLO we generate bremsstrahlung events which also have unbalanced transverse

momentum in the reconstructed objects due to the initial state radiation. As is explained

in section ?? by using the FBPS formalism we generate the bremsstrahlung events directly

in the MEM frame. This allows us to efficiently integrate out the initial state radiation for

the MEM evaluation of the events in the physical frame.

For the remainder of the paper we will make a simplification by assuming a “perfect”

detector, i.e. the transfer function is equal to W (x,y) = δ(x − y). This assumption is

only valid for well-measured final state particles, therefore as examples we only consider

ZZ → 4" and Zγ → "+"−γ. We stress that non-trivial transfer function can be added

back in without any alteration of the derived methods. Taking this simplification and the

integration over the longitudinal boost in account, Eq. 2.1 becomes

P(n)({pi}|Ω) =
1

σΩ
L(τ) ×

∣∣∣M(n)
Ω (τ, {pi})

∣∣∣
2

, (2.5)

where the event x is characterized by the momenta of the EW final state particles {pi} and

the process independent luminosity function is given by

L(τ) =

∫
dx1dx2

f(x1)f(x2)

x1x2s
δ(x1x2 − τ) (2.6)

and τ = m2
FINAL/s = (

∑
i pi)

2 /s We recall that σΩ represents the total cross section,

calculated using cuts in the Lab frame. Note that the Matrix element is invariant under

the boosts and can be evaluated for the explicit values of the momenta {pi} obtained after a

transverse boost from the physical frame. The above derived equation is valid for n orders

in perturbation theory. We will now specify the explicit LO and NLO MEM probability

densities.

To obtain the LO MEM probability density, we simply choose for the scattering prob-

ability density ∣∣∣M(0)
Ω (τ, {pi})

∣∣∣
2

= BΩ(τ, {pi}) , (2.7)

i.e. the tree-level amplitude squared. To obtain a reasonable LO approximation, we want

to minimize the initial state radiation. For this reason we apply the jet veto ΘJET-VETO

on the experimental events. This cut becomes explicit for the NLO expression. In later

sections we will discuss the importance of this veto. In the following subsection we will

detail the extension of the MEM to NLO.

2.1 Going beyond LO: Defining NLO on an event by event basis

The goal of this section is to illustrate how to extend the MEM to NLO in perturbation

theory, i.e. we wish to increase n by one in eq.2.5. However this is not a simple task, in a

normal NLO calculation virtual and bremstraahlung events live in separate phase spaces,

their only communication being through a regularising subtraction scheme. Physical ob-

servable such as the pT of a given particle obtain weights from multiple bremstraahlung

– 5 –
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the boosts and can be evaluated for the explicit values of the momenta {pi} obtained after a

transverse boost from the physical frame. The above derived equation is valid for n orders

in perturbation theory. We will now specify the explicit LO and NLO MEM probability

densities.

To obtain the LO MEM probability density, we simply choose for the scattering prob-

ability density ∣∣∣M(0)
Ω (τ, {pi})

∣∣∣
2

= BΩ(τ, {pi}) , (2.7)

i.e. the tree-level amplitude squared. To obtain a reasonable LO approximation, we want

to minimize the initial state radiation. For this reason we apply the jet veto ΘJET-VETO

on the experimental events. This cut becomes explicit for the NLO expression. In later

sections we will discuss the importance of this veto. In the following subsection we will

detail the extension of the MEM to NLO.

2.1 Going beyond LO: Defining NLO on an event by event basis

The goal of this section is to illustrate how to extend the MEM to NLO in perturbation

theory, i.e. we wish to increase n by one in eq.2.5. However this is not a simple task, in a

normal NLO calculation virtual and bremstraahlung events live in separate phase spaces,

their only communication being through a regularising subtraction scheme. Physical ob-

servable such as the pT of a given particle obtain weights from multiple bremstraahlung
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Physics in the MEM frame. 
• Any Observable which is Lorentz invariant is 

identical in the MEM and lab frame. 

• On the contrary, frame dependent quantities like 
transverse momentum change in the MEM frame 
compared to the Lab frame. 

• We can use Lorentz invariant “p_T”

• Rapidity is defined in the lab frame

• All cuts are performed in the Lab frame

a) LO Comparison

b) NLO Comparison

Figure 2: Comparison between NLOME and MCFM for pp → Z → !+!− at LO and NLO. Lorentz
invariant quantities such as the total cross section, and m!! agree. Since the output of MCFM and
NLOME are in different frame (Lab and MEM respectively) quantities which are frame dependent
differ. At LO however, the MEM and Lab frame definitions of pT are identical.

80 ≤ m!+!− ≤ 100 GeV. (4.2)

We purposefully choose to stagger the lepton pT to open up a region of phase space in which

vanish at LO but can contribute in the real diagrams at NLO. This area of phase space is

interesting, because although the starting point for the code is a born phase space point,

kinematics such as those described above can enter at NLO since pT since the lab to MEM

frame boost will change the relative pT of each lepton. We present the comparison between
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electro-weak particles in the presence of a jet veto. Clearly, in the laboratory frame the

unclustered initial state partonic radiation will spoil the transverse momentum balance. To

recover Born kinematics, we have to introduce so-called beam jets. These beam jets will

cluster all initial state radiation such that we have a momentum conserving event for the

reconstructed objects. We maintain transverse momentum balance in the frame where both

beam-jet axis are along the incoming beam directions. Note that in this so-called physical

frame the incoming protons are not necessarily along the incoming beam directions. In this

manner we have the same phase space for the reconstructed composite objects at any order

in perturbation theory and an un-normalized probability density weight can be assigned

to event in the perturbative regions of phase space at any orders in the strong coupling

constant.

To be specific, consider the observable PP → X where X is a final state of electro-

weak particles. At LO the final state particles are balanced in transverse momentum. In

the real contribution to the NLO corrections an extra bremsstrahlung parton k is emitted,

PP → X + k. We demand zero jets by applying a jet veto, which would leave an observed

final state unbalanced in the transverse plane. However, by clustering the parton with

one of the incoming partons we preserve momentum conservation for the observable final

state. The clustering procedure is as simple as adding the radiated parton 4-vector to one

of the beam momenta. As a result, the beam jet gains some transverse momentum in the

laboratory frame.

By applying the above procedure we can calculate a K-factor for each individual in the

physical frame. That is, given the process papb → p1, . . . , pn where the final state momenta

are those of the Electro-Weak final state particles, we can define

d(n) σ

dp1 · · · dpn

⌋

NLO

= KNLO(p1 . . . , pn)
d(n) σ

dp1 · · · dpn

⌋

LO

or (3.1)

dσ

dO(p1, . . . , pn)

⌋

NLO

= KNLO(p1, . . . , pn)
dσ

dO(p1, . . . , pn)

⌋

LO

,

where the momenta are defined in the physical frame. Note that only for Lorentz invariant

observables, the differential cross section is defined in the laboratory frame. For non Lorentz

invariant observables, the bremsstrahlung events are dispersed to non-identical values of

the observable in the laboratory frame. It is therefore useful to express the laboratory

frame defined transverse momentum, pT , the rapidity difference ∆η and the azimuthal

angle difference, ∆φ, in terms of invariants. In this manner laboratory frame cuts can

easily be imposed in the physical frame. Given particles with 4-vector momenta pi and pj,

we have

p(i)
T = 2

(pa·pi)(pi·pb)

(pa·pb)
; ηi =

1

2
log

(
xa

xb

(pb·pi)

(pa·pi)

)
(3.2)

⇒ ∆ηij =
1

2
log

(
(pb·pi)(pa·pj)

(pa·pi)(pb·pj)

)
; ∆φij = arccos

(

cosh(∆ηij) −
(pi·pj)

p(i)
T p(j)

T

)

.

Note that the single particle rapidity depends on the parton fraction values. This quantity

– 6 –

electro-weak particles in the presence of a jet veto. Clearly, in the laboratory frame the

unclustered initial state partonic radiation will spoil the transverse momentum balance. To

recover Born kinematics, we have to introduce so-called beam jets. These beam jets will

cluster all initial state radiation such that we have a momentum conserving event for the

reconstructed objects. We maintain transverse momentum balance in the frame where both

beam-jet axis are along the incoming beam directions. Note that in this so-called physical

frame the incoming protons are not necessarily along the incoming beam directions. In this

manner we have the same phase space for the reconstructed composite objects at any order

in perturbation theory and an un-normalized probability density weight can be assigned

to event in the perturbative regions of phase space at any orders in the strong coupling

constant.

To be specific, consider the observable PP → X where X is a final state of electro-

weak particles. At LO the final state particles are balanced in transverse momentum. In

the real contribution to the NLO corrections an extra bremsstrahlung parton k is emitted,

PP → X + k. We demand zero jets by applying a jet veto, which would leave an observed

final state unbalanced in the transverse plane. However, by clustering the parton with

one of the incoming partons we preserve momentum conservation for the observable final

state. The clustering procedure is as simple as adding the radiated parton 4-vector to one

of the beam momenta. As a result, the beam jet gains some transverse momentum in the

laboratory frame.

By applying the above procedure we can calculate aK-factor for each individual in the

physical frame. That is, given the process papb → p1, . . . , pn where the final state momenta

are those of the Electro-Weak final state particles, we can define

d(n) σ

dp1 · · · dpn

⌋

NLO

= KNLO(p1 . . . , pn)
d(n) σ

dp1 · · · dpn

⌋

LO

or (3.1)

dσ

dO(p1, . . . , pn)

⌋

NLO

= KNLO(p1, . . . , pn)
dσ

dO(p1, . . . , pn)

⌋

LO

,

where the momenta are defined in the physical frame. Note that only for Lorentz invariant

observables, the differential cross section is defined in the laboratory frame. For non Lorentz

invariant observables, the bremsstrahlung events are dispersed to non-identical values of

the observable in the laboratory frame. It is therefore useful to express the laboratory

frame defined transverse momentum, pT , the rapidity difference ∆η and the azimuthal

angle difference, ∆φ, in terms of invariants. In this manner laboratory frame cuts can

easily be imposed in the physical frame. Given particles with 4-vector momenta pi and pj,

we have

(p(i)T )2 = 2
(pa·pi)(pi·pb)

(pa·pb)
; ηi =

1

2
log

(
xa
xb

(pb·pi)
(pa·pi)

)
(3.2)

⇒ ∆ηij =
1

2
log

(
(pb·pi)(pa·pj)
(pa·pi)(pb·pj)

)
; ∆φij = arccos

(

cosh(∆ηij)−
(pi·pj)
p(i)T p(j)T

)

.

Note that the single particle rapidity depends on the parton fraction values. This quantity

– 6 –



MEM at LO: Summary

• Using our approach one can produce a LO weight for an experimental event of the form,

• Where Q is the desired final state. We map to the born by boosting away X.

• We then integrate over all boosts with the limits on the integration set by lab frame 
rapidity cuts. 

• One expects this to work well provided that X doesn’t have a big impact on the 
observable or the observable isn’t strongly dependent on the local pdf shape

• Normalisation is fixed to the cross section, 
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NLO parton level

• At NLO in perturbation theory one 
has to deal with divergences 

• Virtual diagrams contain UV and IR 
divergences which typically manifest 
themselves as poles an analytic. 

• Real diagrams contain an emission 
of an additional parton. Although 4 
dimensional they develop singular 
regions in phase space when the 
extra parton is unresolved. 

At Born level cross sections are simple to calculate

σLO =

∫

m

dσLO

At NLO divergences develop independently in real and virtual contributions

σNLO =

∫

m
dσLO +

∫

m
dσV +

∫

m+1
dσR

To deal with these and produce a NLO monte carlo program we use the dipole subtraction

method

σNLO =

∫

m

dσLO +

∫

m

[dσV +

∫

1
dσA]ε=0 +

∫

m+1
[(dσR)ε=0 − (dσA)ε=0]

1. Introduction

The current plan for the LHC calls for running in both 2011 and 2012. Running in 2011

is at a centre of mass energy at
√

s = 7 TeV, with a baseline expectation of 1 fb−1 per

experiment and a good chance that greater luminosity will be accumulated. At the end of

the 2012 run it is likely that data samples in excess of 5 fb−1 will have been accumulated

by both of the general purpose detectors. Data samples of this size will (at the very least)

allow detailed studies of the production of pairs of vector bosons.

It therefore seems opportune to provide up-to-date predictions for the production of

all pairs of vector bosons, specifically for the LHC operating at 7 TeV. This extends the

previous implementation of di-boson production in MCFM [1] which was focussed primar-

ily on the Tevatron. Moreover, we also consider the production of final states that contain

real photons. This requires the inclusion of fragmentation contributions in order to address

the issue of isolation in an experimental context. In addition, we have also included the

contribution of the gluon–gluon initial state to a number of processes. These finite correc-

tions are formally of higher order but can be of phenomenological relevance at the LHC

where the gluon flux is substantial.

A review of the current experimental status of vector pair boson production, primarily

from the Tevatron, can be found in ref. [2]. The production of pairs of vector bosons

is crucial both in order to check the gauge structure of the Standard Model (SM) and

in the search for new physics. This is because production of vector boson pairs and the

associated particles from their decay, enter as irreducible backgrounds for many Higgs and

new physics searches. The observationally most promising decays of the Higgs boson are

to two photons (for a light Higgs), two W ’s which decay leptonically or two Z’s. Clearly

vector boson pair production is an irreducible background in these searches. Processes with

leptons and missing energy are typical signatures of many new physics models, of which

supersymmetry is a classic example. Again, knowledge of SM processes which possess

multiple leptons and missing energy is crucial in the quest to discover or rule out these

models.

In Fig. 1 we show the rates for various electroweak processes at energies between
√

s = 7

and 14 TeV. This figure serves both as a road-map to this paper and as an indication of
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Subtraction schemes.

• To make a NLO Monte Carlo program we need to tackle these divergences, this is done 
using a subtraction scheme.  (Catani, Seymour;  Frixione Kunszt, Signer)

• Introduce a counter term which lives in the m+1 phase space. This counter term will 
cancel a real singularity point by point in the singular region. 

• Next, integrate out one of the counter term particles analytically, arriving at a m-
dimensional integral. The singular regions will now manifest as analytic poles.  

• Cancel these poles against the virtual terms and live happily ever after...  

At Born level cross sections are simple to calculate
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∫

m
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MEM at NLO

• Naively one might expect the MEM to be impossible at NLO. 

• This is because NLO calculations include two sorts of contributions which live 
in different phase spaces. 

• The virtual (loop) diagrams can easily be incorporated into the method, since 
they share the same phase space as the Born. 

• The issue lies in the generation of the real phase space, which contain one 
extra parton. We need to define a map for these to a Born topology. 



The Forward Branching phase space

• To overcome this difficulty, we use the Forward Branching Phase space proposed 
in : 1106.5045 (Giele, Stavenga, Winter).

• This generation technique allows one to create emitted radiation without changing 
the final state particles, in this way the final state particles are fixed. 

• We integrate over all emissions and as a result cover all of phase space. 

• We have implemented this into a new program NLOME based upon MCFM 
(Campbell, Ellis, CW).
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How does the Forward brancher work?

• To branch particle b, we boost a, such that momentum conservation 
requires b to have a virtuality. 

A. An Initial State Forward Branching Phase Space Generator

To start the derivation of the initial state FBPS generator we write the phase space for the

production of a state Q from two initial partons, p̂a and p̂b, as

1

2ŝab
dΦ[D]

1 (p̂a + p̂b → Q) =
2π

2ŝab
δ(ŝab − Q2) . (A.1)

The phase space for the emission of one extra initial state parton with momentum pr is

given by [17]

1

2sab
dΦ[D]

1 (pa + pb → Q + pr) =
(2π)1−D

4

(
ŝab

s2
ab

)(
tartrb

sab

)(D−4)/2

d tard trbdΩ[D−3](A.2)

×
[

2π

2ŝab
dΦ[D]

1 (p̂a + p̂b → Q)

]

=
1

2sab
dΦ[D]

FBPS ×
[

2π

2ŝab
dΦ[D]

1 (p̂a + p̂b → Q)

]
.

We need the FBPS generator only in 4-dimensions

dΦ[4]
FBPS = dΦFBPS =

1

(2π)3

(
ŝab

sab

)
d tard trbdφ , (A.3)

where φ is the azimuthal angle around the z-axis and the invariant sxy = (px + py)2 and

txy = (px − py)2.

While the above formula gives the phase space integrator, we need to derive both

the integration boundaries and the explicit construction of the generated 4-vectors for the

construction of a numerical Monte Carlo integrator.

The phase space generator starts using the input momenta p̂a and p̂b
{

p̂a = Êa (1,−1, 0, 0)

p̂b = Êb (1, 1, 0, 0)
, (A.4)

and ŝab = 2 p̂a · p̂b = 4 ÊaÊb.

The current integrations variables are tar, trb and φ. We change this to sab, trb and φ

by inserting into the integral 1 =
∫

d sab δ(sab + tar + trb − ŝab) and integrate over tar to

find

dΦFBPS =

(
ŝab

(2π)3

)∫ 0

−tmin

d trb

∫ SCM

bsab

(
d sab

sab

)∫ 2π

0
dφ . (A.5)

We have to construct the new momenta pa, pb and pr from the MC integration variables

and determine the integration boundary tmin.

For the integration in sab we absorb 1/sab into the integration measure
∫ SCM

bsab

d sab

sab
= log

(
SCM

ŝab

)∫ 1

0
d r; sab(r) = ŝr

abs
1−r
CM (A.6)

For the trb integration we employ 2 variants. The first option is flat, i.e.
∫ 0

−tmin

d tbr = tmin

∫ 1

0
d r; tbr = −r × tmin . (A.7)
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The second option is logarithmic
∫ 0

−tmin

d tbr =

∫
−tsoft

−tmin

d tbr +

∫ 0

−tsoft

d tbr (A.8)

∫
−tsoft

−tmin

d tbr = log

(
tmin

tsoft

) ∫ 1

0
d r trb(r); trb(r) = − (tmin)

r (tsoft)
1−r .

The soft part is done flat.

After the MC integration variables have been chosen, we need to construct the 4-

vectors. In order to branch p̂b we have to give it a virtuality trb. We do this by boosting

p̂a {
p̃a = (1 + β) p̂a

p̃b = p̂b − β p̂a
, (A.9)

with β = −trb/ŝab. Note that p̂a + p̂b = p̃a + p̃b = pa − pr + pb. This means we have added

to the phase space generator a factor
∫

dβ δ(β + trb/ŝab) which does not change the phase

space weight.

We choose pa = p̃a = (1 + β) p̂a and parametrize pb as follows

pb = z Êb (1, cos θ, sin θ cosφ, sin θ sin φ) , (A.10)

where θ is the polar angle with respect to momentum p̂b.

The above choices give pr = pb − p̃b = pb − p̂b + βp̂a. To express cos θ and z in terms

of the integration variables and the input energies we calculate the invariants
{

tar = (pa − pr)2 = (p̂a + p̂b − pb)2

trb = −2 pr · pb = 2 p̂b · pb − 2βp̂a · pb = 2 p̂b · pb + 2 (trb/ŝab) p̂a · pb
(A.11)

⇒

{
tar = 2 (p̂a · p̂b − p̂a · pb − p̂b · pb)

trb = 2 (p̂a · p̂b) (p̂b · pb)/(p̂a · p̂b − p̂a · pb)

⇒

{
tar = 4 ÊaÊb − 2 zÊb(Êa + Êb + (Êa − Êb) cos θ)

trb = 4 zÊ2
b (1 − cos θ)/(2 − z(1 + cos θ))

.

We invert the equations to get

z =
4 Ê2

b (ŝab − tar − trb) + tartrb

4 Ê2
b (ŝab − trb)

=
4 Ê2

b sab + tartrb

4 Ê2
b (ŝab − trb)

(A.12)

cos θ =
4 Ê2

b (ŝab − tar − trb) − tartrb

4 Ê2
b (ŝab − tar − trb) + tartrb

=
4 Ê2

b sab − tartrb

4 Ê2
b sab + tartrb

.

By choosing

tmin = min(sab − ŝab, ŝab(ECM − Êa)/Êa) ,

we fulfill the requirement −1 < cos θ < 1. The other constraints can be implemented

through an event veto, giving for the phase space

dΦFBPS =
1

(2π)3

(
ŝab

sab

)
d tard trbdφ θ(xa < 1)θ(xb < 1) , (A.13)

where xa = (1 − trb/ŝab) × Ea/ECM and xb = sab/(xaSCM) are the parton fraction in the

laboratory frame.
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• Now one can decay this particle into pb and pr. The resulting phase space 
then factorizes as follows: 

• We wish to factorise the phase space as follows: 

A. An Initial State Forward Branching Phase Space Generator

To start the derivation of the initial state FBPS generator we write the phase space for the

production of a state Q from two initial partons, p̂a and p̂b, as

1

2ŝab
dΦ[D]

1 (p̂a + p̂b → Q) =
2π

2ŝab
δ(ŝab − Q2) . (A.1)

The phase space for the emission of one extra initial state parton with momentum pr is

given by [17]

1

2sab
dΦ[D]

1 (pa + pb → Q + pr) =
(2π)1−D

4

(
ŝab

s2
ab

)(
tartrb

sab

)(D−4)/2

d tard trbdΩ[D−3](A.2)

×
[

2π

2ŝab
dΦ[D]

1 (p̂a + p̂b → Q)

]

=
1

2sab
dΦ[D]

FBPS ×
[

2π

2ŝab
dΦ[D]

1 (p̂a + p̂b → Q)

]
.

We need the FBPS generator only in 4-dimensions

dΦ[4]
FBPS = dΦFBPS =

1

(2π)3

(
ŝab

sab

)
d tard trbdφ , (A.3)

where φ is the azimuthal angle around the z-axis and the invariant sxy = (px + py)2 and

txy = (px − py)2.

While the above formula gives the phase space integrator, we need to derive both

the integration boundaries and the explicit construction of the generated 4-vectors for the

construction of a numerical Monte Carlo integrator.

The phase space generator starts using the input momenta p̂a and p̂b
{

p̂a = Êa (1,−1, 0, 0)

p̂b = Êb (1, 1, 0, 0)
, (A.4)

and ŝab = 2 p̂a · p̂b = 4 ÊaÊb.

The current integrations variables are tar, trb and φ. We change this to sab, trb and φ

by inserting into the integral 1 =
∫

d sab δ(sab + tar + trb − ŝab) and integrate over tar to

find

dΦFBPS =

(
ŝab

(2π)3

)∫ 0

−tmin

d trb

∫ SCM

bsab

(
d sab

sab

)∫ 2π

0
dφ . (A.5)

We have to construct the new momenta pa, pb and pr from the MC integration variables

and determine the integration boundary tmin.

For the integration in sab we absorb 1/sab into the integration measure
∫ SCM

bsab

d sab

sab
= log

(
SCM

ŝab

)∫ 1

0
d r; sab(r) = ŝr

abs
1−r
CM (A.6)

For the trb integration we employ 2 variants. The first option is flat, i.e.
∫ 0

−tmin

d tbr = tmin

∫ 1

0
d r; tbr = −r × tmin . (A.7)
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2ŝab
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Technical details: Dipole subtractions 

• Normal implementation of Catani Seymour dipoles for initial-initial singularities 
requires a Lorentz transformation on the final state whilst keeping the initial state 
fixed (up to a rescaling). 

• This is bad for us, since this maps different born points to each other.

• Modify dipole phase space such that the map to the original born phase space point 
is preserved. 



Validating the new dipoles

• Ultimately alpha independence 
tells us that the code is 
independent of the dipole 
subtractions. 

• Plot here shows alpha 
(in)dependence for a single phase 
space point. 



Validation: Measuring the mass of the Z 

We generated ~5000 (~0.1 fb-1)  events using Pythia, applying simple lab frame 
cuts. 

Tests boosts and stability of method, independent code used to generate events 

NLO effects are small, which is expected given the physics under investigation. 

Here f(N) is a normalisation function related to the overall number of events in the data

set, In this paper we choose f(N) = Ne−N , ultimately however it is more convenient to

work with the logarithms of the likelihood. As a result the function f(N) plays no real

role in the calculation.

When there is a good match between data and a theoretical model Ω the resulting P
will be larger than when those when Ω is not optimal. As result the likelihood function

will be larger for theories which describe the data better. The Ω which maximises both L
(and logL) is thus the best fit to the data. If the data set is large enough then one finds

a parabolic behaviour around the maximum, one can then use the following definition to

define standard deviations from the observed maximum,

logL(nσ) = logLmax − n2/2. (2.3)

In our examples we will use this to define the 1 and 2 σ bands.

At LO the scattering probability is given by SΩ(y) = |M(0)
Ω (y)|2 and the parton

fractions are constrained to a single value due to momentum conservation. However, to

match data to LO kinematics proves challenging. Any event will always contain additional

radiation, X, which is not modeled by the Born matrix element. To match to the Born

kinematics, we cluster the additional radiation not contained in the reconstructed objects

with the beam particles. This results in beam jets which are not parallel to the incoming

proton directions. We can now apply a Lorentz boost in the transverse directions such

that the beam jet axis are in the same direction as the incoming protons. The longitudinal

boost of the event is unknown, hence we need to integrate this out. This also removes the

ambiguity in the transverse Lorentz transformation as all events connected by a longitudinal

boost are summed over. The application of boosts to deal with the initial state radiation

was discussed previously in ref. [8]. Since the matrix element is Lorentz invariant we did

not change the likelihood by applying the transverse and longitudinal boosts. Note that

for final states with no missing energy caused by neutrino’s (e.g. PP → 4"), we can boost

to the physical frame by demanding transverse momentum balance, without referring to

the additional initial state radiation. In short, by boosting the event to the physical frame

we have recovered Born kinematics and can assign an unique likelihood to the event. The

procedure above is shown schematically in Fig. 1.

At NLO we generate bremsstrahlung events which also have an unbalanced transverse

momentum in the reconstructed objects due to the initial state radiation. As is explained

in section 3 by using the FBPS formalism we generate the bremsstrahlung events directly

in the physical frame. This allows us to efficiently integrate out the initial state radiation

for the MEM evaluation of the events in the physical frame.

For the remainder of the paper we will make a simplification by assuming a “perfect”

detector, i.e. the transfer function is equal to W (x,y) = δ(x − y). This assumption is

only valid for well-measured final state particles, therefore as examples we only consider

ZZ → 4" and Zγ → "+"−γ. We stress that non-trivial transfer function can be added

back in without any alteration of the derived methods. Taking this simplification and the
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Example: Setting Limits on the Higgs 

• A more interesting example is to 
use the MEM to constrain the 
Higgs 

• We generate ~ 250 (~7fb-1) ZZ->4l 
unweighted NLO events. 

• The background spectrum contains 
everything in MCFM (e.g. gg->ZZ, 
singly resonant Z..). 

• NLO is able to set better limits 
since it is a better fit to the 
background. 



Example: Higgs mass measurements. 

• The MEM can also be used to 
measure the mass of the Higgs. 

• For a light Higgs the MEM is 
dominated by the transfer 
functions. 

• For a heavy Higgs the MEM is 
able to provide a best fit mass 
(427+/- 14 NLO), (428 +/- 14 LO) 
with a handful of events.

• Both NLO and LO get the correct 
mass (minimum of the fit) but 
NLO deviates more from the 
background only hypothesis (0) 



Conclusions. 

• We have illustrated how the MEM can be theoretically well defined at all 
orders, presented simple examples at NLO of H->4l and Z->ll

• In order to define a fixed order weight for an experimental event one must 
boost to a frame in which the final state is balanced. 

• Since a given boost is not unique, we must integrate over all equivalent 
boosts, the Matrix Element doesn’t care but the PDFs do. 

• Our approach does not change the experimental input (transfer functions).  



Future study 

• Measurement of the top mass at the LHC and Tevatron (flagship application 
of the MEM). 

• Higgs in other channels, associated production, two photons etc. 
Confirming SM properties, BR, spin etc. 

• Measurement of/Limits on triple anomalous gauge couplings. 

• ..........

We are keen to extend the method to other measurements, in particular.... 

We gladly welcome experimental input! Beta code of NLOME is available, 
first release expected in April/May. Thank you to experimentalists who 
have helped so far!


