Controlling Backgrounds in New Physics Searches

Kemal Ozeren

UCLA

in collaboration with

Z. Bern, G. Diana, L. J. Dixon, F. Febres Cordero, S. Hoeche, H. Ita, D. A. Kosower, D. Maitre

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Outline

Backgrounds are important 4BSM

Prefer data-driven methods

Role of QCD theory and need for precision

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ の < @

Distributing NLO results

Summary

New Physics Searches

- focus has been on MET
- e.g. gluino/squark pair production
- generic signature is MET + jets

• How can SM mimic this?

- $W \rightarrow l^{\pm} \nu$ with undetected lepton
- QCD with mismeasured jet
- $Z \rightarrow \nu \overline{\nu}$ Irreducible background see later in this talk!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Hard Jets at the LHC

Multi-jet events are important at the LHC

- High energy \rightarrow large phase space \rightarrow many jets
- Important to confront this theoretically and experimentally

-

< ロ > < 同 > < 回 > < 回 >

Large uncertainties at leading order

- LO predictions suffer from a large theoretical uncertainty
- coupling and PDFs depend on μ

$$\alpha_{\mathcal{S}}(\mu^2), \qquad f(x,\mu^2)$$

- we estimate uncertainty by varying μ
- each jet brings a power of $\alpha_S(\mu^2)$ \rightarrow multi-jet cross sections most in need of NLO correction
- higher precision knowledge of SM backgrounds increases discovery potential - see later

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

A few words on QCD Predictions

- LHC workhorses for full event simulation: Herwig, Sherpa, Pythia
- ME+PS matching important when there are many hard jets
 → gets shape right
- But need NLO to get normalization correct. This meant sacrificing shower + hadronization, but...

- ...recent exciting progress in matching NLO/PS: MC@NLO [Frixione, Webber; SHERPA] POWHEG [Nason; Frixione, Nason, Oleari]
- these tools still require the one-loop amplitude as input [BlackHat, GoSam, MCFM, Rocket ...]

BlackHat

- Efficient evaluation of 1-loop QCD amplitudes
 → component of NLO calculation (generally the hardest part)
- Implementation of modern generalised unitarity cut method
- Evaluates coefficients of integrals:

$$A = R + \sum_{i} d_{i} + \sum_{i} c_{i} + \sum_{i} b_{i} > \infty$$

- Opens the door to precision for high-mulitiplicity observables
- Speed critical require fast trees Berends Giele, BCFW, analytic \rightarrow 90-95% of computing time spent on trees
- Extremely powerful: e.g. Z + 4 jets [BlackHat 1108.2229] W + 5 jets [forthcoming]

Case Study: controlling MET+jets background with NLO precision

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Data Driven Background Estimation

- CMS uses observed photons to estimate unobserved Z bosons [CMS PAS SUS-08-002] theory input [1106.4503] $\sigma(pp \rightarrow Z(\rightarrow \nu\overline{\nu})) = \sigma(pp \rightarrow \gamma) \times R_{Z/\gamma}$ background to NP measure this
- similar approaches possible, benefit of above is statistics (no branching ratio!)
- so what is the conversion factor *R*? (and its uncertainty)

```
\longrightarrow let's calculate this at NLO in QCD
```

Setup

- We calculate the ratio Z/γ in association with 3 jets, following the CMS cuts ("classical" MET + jets analysis)
- Use BlackHat for virtual part, SHERPA for real emission, integration and process management

[Gleisberg, Hoeche, Krauss, Schonherr, Schumann, Siegert, Winter]

• The critical variables are

$$H_T = \sum_{\text{jets}} E_T^{\text{jets}}, \qquad \overrightarrow{\text{MET}} = -\sum_{\text{jet}} \overrightarrow{p}_{\text{jet},T}$$

Iook at various regions in this space:

 1. $H_T > 300$, $|\overline{\text{MET}'}| > 250$ high MET

 2. $H_T > 500$, $|\overline{\text{MET}'}| > 150$ high H_T

 3. $H_T > 300$, $|\overline{\text{MET}'}| > 150$ "baseline"

 4. ...

Estimating theoretical uncertainty

process	LO	ME+PS	NLO
Z + 2j	$0.521\substack{+0.180 \\ -0.124}$	0.416	$0.560^{+0.012}_{-0.043}$
$\gamma + 2j$	$2.087^{+0.716}_{-0.494}$	1.943	$2.448^{+0.142}_{-0.225}$
ratio	0.250	0.214	0.229

- Matrix Element + Parton Shower (ME+PS) as implemented in Sherpa. Parton shower matched to exact LO MEs.
- Usual prescription for theoretical uncertainty scale variation
- For ratios this is problematic, as variation mostly cancels
- We estimate the uncertainty as difference between NLO and ME+PS results $\rightarrow 5-10\%$
- Encouraging agreement between very different calculational schemes

Outcome

- we worked closely with groups from CMS
- fruitful cross-talk between theory and expt
- this search was very constraining...

Good example of utility of high-precision theory (ratio = input into data driven method)

See 1111.4193 and [forthcoming] for many plots and numbers

▲ロ ▶ ▲ 聞 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ● の Q @

Outlook

- roughly $5 \mathrm{fb}^{-1}$ taken in 2011
- With more data, we can cut more
- Higher H_T and MET [CMS PAS SUS-11-004]
- Potential large logs, e.g.:

$$\ln \frac{H_T}{p_T^Z}$$

Questions:

- how are theory predictions doing out on the tails?
- do electroweak corrections become important?
- Full event simulation?

[Ask, Parker, Sandoval, Shea, Stirling]

• Impact of tagging b-quarks ? [1106.3272, CMS-PAS-SUS-11-006]

Analysis Tools

- NLO calculations often very computationally intensive
 → don't want to run again and again for different setups
- solution: store events and apply analysis cuts later
- ROOT ntuple files are tailor made for this purpose. Store event momenta and weights:

$$M^{\rm loop} = A + B \ln \mu + C \ln^2 \mu$$

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

- Can change scales/pdfs/jet definitions after the run
- Experimentalists fluent in this framework
 → just give them the ntuples
- Health warning: you can tighten, but not loosen the cuts

Ntuples in Action - ATLAS W + jets [1201.1276]

- ntuples generated with BLACKHAT+SHERPA [1009.2338]
- experimenters perform their own analysis of the NLO results
- see also Z+4-jets [ATLAS 1111.2690] and pure QCD 4-jet [forthcoming]
- we are moving towards public release of ROOT ntuples, including software for their analysis

Summary

multi-jets crucial at LHC

- example: Z/γ ratio needed for NP search in Jets+MET channel \rightarrow I presented a detailed study of higher order QCD corrections
- Our results used by CMS to estimate theoretical uncertainty
 → feeds directly into exclusion limits (and discovery potential...)
- ROOT ntuple format as a way to distribute NLO event samples
 → already in use by ATLAS, excellent agreement of NLO V + 4-jet with data

ション ヘロン イロン トロン しょうくう