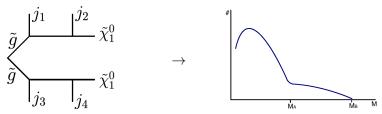
EdgeFinder

A proof-of-concept for unbiased kinematic edge measurements in heavily polluted samples

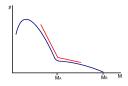
David Curtin

arXiv:1112.1095, PRD

MC4BSM Workshop Cornell University, Ithaca, NY


March 23, 2012

Problem:


• You have some kinematic distribution $(M_{jj}, M_{T2}, ...)$

- Don't know the global shape, but you want to measure the position of the edge/endpoint because it gives you some information about the masses in the decay chain.
- How do you measure this edge?

Old Solution

Construct a fit function (commonly a linear kink, maybe with detector-motivated smearing, or something else depending on the shape of your edge) and fit to find the edge:

This has a lot of problems:

- The fit function is only an approximation to the shape of some subset of the distribution near the edge feature. Which subset? Where to fit? How good an approximation?
- This systematic error will not be included in the statistical uncertainty of the fit
- Do you introduce bias by picking a fit-domain?
- Dreaming up more clever fit functions won't solve this problem. Edges are difficult and ill-defined features.

Stony Brook University David Curtin EdgeFinder 2 / 25

Why Care?

- Edge Measurements are difficult but important.
 - New kinematic variables like M_{T2} are extremely powerful and we would like to use them to perform mass measurements at the LHC.
 - Unfortunately they are very fragile to contamination and wash-out, making their endpoints/edges difficult to measure.
 - Need a reliable way to extract low-quality edges that accurately includes the uncertainty in their position.
- Edge Measurements are not just difficult but deceiving!
 - Fake measurements can arise from combinatorics, cut artifacts, background, low statistics Worst-Case Scenartio!
 - You can deal with the false-positive problem by using two 'orthogonal'
 ways of cleaning up your distribution, measuring all the edges and only
 keeping those where both methods agree. (Examples later.)
 - This requires a way of extracting all the edges from a distribution without bias, stressing accurate uncertainties (otherwise we have no concept of two edge measurements 'agreeing' with each other).

New Solution

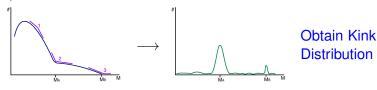
Objective

Find all the edges in a distribution, find their uncertainties, include systematic errors, do it automatically (no bias), and use as much or as little information about the shape of the edge as we want.

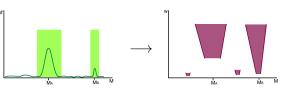
EdgeFinder

Non-Deterministic Edge Measurement

Idea: a 'Monte-Carlo' based approach.


- Come up with a fit function that includes as much or as little info as you'd like (linear kink, linear kink + smearing, ...)
- Generate **a lot** of random fit domains over your data (no bias)
- Fit your function over each fit domain. Each fit returns a possible edge position.
 (Could weigh it with a goodness-of-fit test.)
- → Build up a distribution of found edges.
- True edges show up as peaks. You've just turned edge measurement into bump hunting.
- Finds all the edges without bias.
- Width of peaks give uncertainties that includes just about all possible sources. Self-measuring measurement resolution!

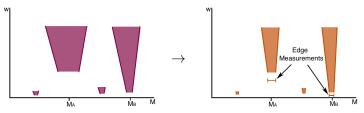
This **Edge-to-Bump Method** obviously needs more exploration & verification, but let's see how it works in a simple proof-of-concept.


Edge-to-Bump Method

Step-by-Step:

 Fit a simple kink function (no smearing) 1000's of times to random subdomains of data (without domain length or position bias).

2. Detect Peaks in Kink Distribution → Edge Detection.



Scan over peak width w looking for 3σ excesses in central vs side bins

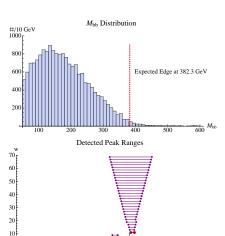
Stony Brook University David Curtin EdgeFinder 6 / 25

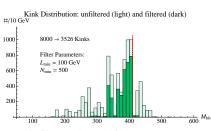
Edge-to-Bump Method

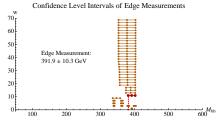
3. Turn these found peaks into edge measurements by taking the mean & standard deviation of the edge distribution around the peak:

(The absence of an edge is signaled by the absence of clear peaks in the kink-distribution. Works very reliably.)

Example

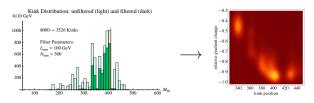

100


200


300

400

500



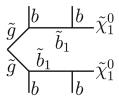
 $600^{M_{bb}}$

Possible Extensions

Main Idea: analyze a distribution of fits rather than a single fit.

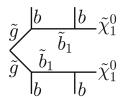
 One could imagine much more sophisticated ways of analyzing the distribution of fits, can almost treat them like "events"

- → Could also include a statistical weight for each found edge.
- The method is completely general: to detect different kinds of features just use different fit functions.


Stony Brook University David Curtin EdgeFinder 9 / 25

EdgeFinder

 Publicly available Mathematica implementation of the Edge-to-Bump method:


```
http://insti.physics.sunysb.edu/~curtin/edgefinder/
```

- Simple proof-of-concept: many refinements & optimizations possible.
- We demonstrate its utility in a few collider studies (including blind verification) by measuring all the masses in a fully hadronic 2-step symmetric decay chain with maximal combinatorial ambiguity:

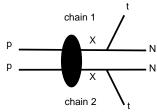
Practical Demonstration

Use M_{T2} endpoints to measure all the masses in

Combinatorial worst-case!

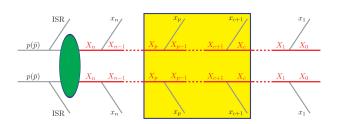
But let's introduce M_{T2} first...

Some useful M_{T2} references:

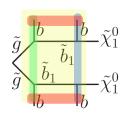

- Barr, Lester, Stephens '03 [hep-ph/0304226] (old-skool M_{T2} review)
- Cho, Choi, Kim, Park '07 [0711.4526] (analytical expressions for M_{T2} event-by-event without ISR, M_{T2}-edges)
- Burns, Kong, Matchev, Park '08 [0810.5576] (definition of M_{72} -subsystem variables, analytical expressions for endpoints & kinks w. & w.o. ISR)
- Konar, Kong, Matchev, Park '09 [0910.3679] (Definition of $M_{72\perp}$ to project out ISR-dependence)

(More in the paper.)

Classical M_{T2} Variable


$$M_{T2}(\vec{p}_{t1}^T, \vec{p}_{t2}^T, \tilde{m}_N) = \min_{\vec{q}_1^T + \vec{q}_2^T = \vec{p}^T} \left\{ \max \left[m_T \left(\vec{p}_{t1}^T, \vec{q}_t^T, \tilde{m}_N \right), m_T \left(\vec{p}_{t1}^T, \vec{q}_t^T, \tilde{m}_N \right) \right] \right\}$$

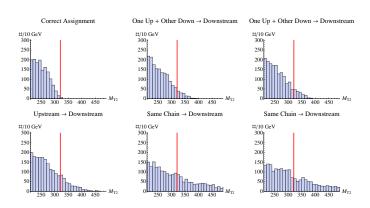
- If p_{N1}^T , p_{N2}^T were known, this would give us a <u>lower bound</u> on m_X
- However, we only know $\underline{\text{total}} \ \vec{p}^I$ $\Rightarrow \underline{\text{minimize}} \ \text{wrt all possible splittings,}$ get 'worst' but not 'incorrect' lower bound on m_X .
- We don't even know the invisible mass $m_N!$ Insert a testmass \tilde{m}_N .



For the <u>correct testmass</u>, $M_{T2}^{\text{max}} = m_X \Rightarrow \text{ Effectively get } m_X(m_N)$.

Multi-Step: M_{T2} -Subsystem Variables

Complete Mass Determination Possible for 2+ Step Decay Chain.



Measure 3 masses. Available variables:

 M_{bb} ,

 $M_{T2}^{221},\,M_{T2}^{210},\,M_{T2}^{220}$

M_{T2} combinatorics are awful...

M_{T2} Combinatorics Problem

 M_{T2} is 'powerful but fragile', much more problematic than M_{ij} :

- There are more wrong-sign combinations.
- Edges are shallow → less well defined, more easily washed out (ISR, detector effects, background).
- The combinatorics background has nontrivial structure
 → Fake Edges!
- No one method of reducing combinatorics background works reliably all of the time.
- Combinatorics Background doesn't just reduce quality of edge measurement, it can invalidate measurement completely. Have to reject fakes!

Golden Rule for M_{T2} Measurements

Always use more than one method to reduce combinatorics background.

Only accept endpoint measurement if they agree

For each M_{T2} variable we perform the following steps:

- **①** Apply two CB reduction methods \rightarrow two M_{T2} distributions.
- **②** Apply Edge-to-Bump to each \rightarrow two kink distributions.
- Good quality edges in both distributions that agree?

YES: merge & accept measurement (can increase error bars)

NO: discard variable.

(e.g. disagreeing edges, no edge in one distribution, ...)

Combinatorics Background: DL Method

If we're going to analyze multi-step decay chains we need to get a handle on combinatorics background.

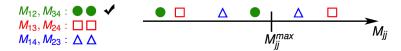
Simplest thing you could do: drop largest few M_{T2} 's per event.

- For each event, the true M_{T2} is a lower bound for M_{T2}^{max} .
- If there are several M_{T2} -possibilities per event, the largest one(s) are more likely to be wrong.
- → Discard Them!
 - Works surprisingly well, some of the time.

Combinatorics Background: KE Method

What else could we do?

Edge in M_{bb} -distribution (invariant mass of decay chain) is relatively easy to measure using Edge-to-Bump, combinatorics are benign.

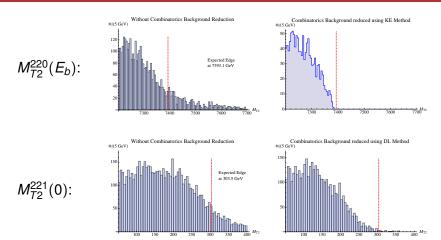

$$\widetilde{\widetilde{g}} \stackrel{b}{\underset{b}{\overleftarrow{b_1}}} \widetilde{b_1} \widetilde{\widetilde{\chi}}_1^0 \longrightarrow \underbrace{\widetilde{b_1}}_{\underset{100}{\overleftarrow{b_1}}} \widetilde{\chi}_1^0 \xrightarrow{\widetilde{\chi}_1^0} \underbrace{\widetilde{b_1}}_{\underset{100}{\overleftarrow{b_1}}} \widetilde{\chi}_1^0 \xrightarrow{\widetilde{\chi}_1^0} \underbrace{\widetilde{b_1}}_{\underset{100}{\overleftarrow{b_1}}} \widetilde{\chi}_1^0 \xrightarrow{\widetilde{\chi}_1^0} \underbrace{\widetilde{\lambda}_1^0}_{\underset{100}{\overleftarrow{b_1}}} \underbrace{\widetilde{\chi}_1^0}_{\underset{100}{\overleftarrow{b_1}}} \underbrace{\widetilde{\chi}_1^0}_{\underset{100}{\overleftarrow{b_1$$

Could we make use of this M_{bb}^{max} information?

Stony Brook University David Curtin EdgeFinder 16/25

Combinatorics Background: KE Method

Known M_{bb}^{max}

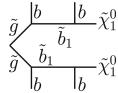


 \Rightarrow deduce correct decay chain assignment for 15 – 30% of events.

100% purity! (Before mismeasurement & detector effects)

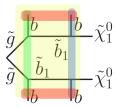
Extremely simple & high-yield method for determining decay chain assignment.

CB Reduction Example



No one method works reliably all of the time. Sometimes they fail, sometimes they produce fake edges.

Stony Brook University David Curtin EdgeFinder 18/25


Now we're finally ready for ...

Monte Carlo Studies

First Monte Carlo Study

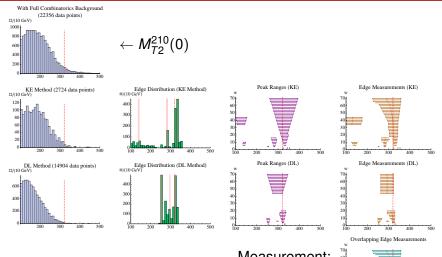
Apply our methods to a **fully hadronic combinatorics-worst-case scenario** without other backgrounds.

Measure 3 masses. Available variables:

Mhh.

$$M_{T2}^{221},\,M_{T2}^{210},\,M_{T2}^{220}$$

(use both ISR-binned & \perp versions, for zero and large testmass).


Choose a particular MSSM Benchmark Point w/o SUSY-BG.

m_{t1}	m _{t2}	st	m _{b1}	m _{b2}	s _b	m _{g̃}	$m_{\tilde{\chi}^0_1}$
371	800	-0.095	341	1000	-0.011	525	98

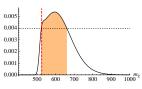
(Already excluded by LHC, but that doesn't matter for us.)

- $\sigma_{\tilde{g}\tilde{g}} \approx 11.6 \text{ pb } @ \sqrt{s} = 14 \text{ TeV}$. Use $\mathcal{L} = 100 \text{ fb}^{-1}$ (pessimistic).
- Simulate with MadGraph/MadEvent, Pythia, PDG.
- Require 4 b-tags & MET > 200 GeV → 58k Signal Events, Eliminates SM BG.

Full M_{T2} Measurement Example

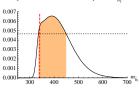
Measurement: $327 \pm 8.7 \, \text{GeV}$ [320.9]

Edge Measurements


Variable	Prediction	Measurement	Deviation/ σ	Quality	
M _{bb}	382.3	391.8 ± 10.3	+0.93	_	
$M_{T2\perp}^{221}(0)$	303.5	240 ± 140	-0.45	С	
$M_{T2}^{221}(0)$		301 ± 47	-0.05	Α	
$M_{T2\perp}^{221}(E_b)$	7153.4	7154 ± 42	+0.01	Α	
$M_{T2}^{221}(E_b)$		7171 ± 42	+0.42	Α	
$M_{T2\perp}^{210}(0)$	320.9	283 ± 44	-0.86	Α	
$M_{T2}^{210}(0)$		$\textbf{327.2} \pm \textbf{8.7}$	+0.72	Α	
$M_{T2\perp}^{210}(E_b)$	7239.8	7141 ± 54	-1.84	Α	
$M_{T2}^{210}(E_b)$		7176 ± 37	-1.75	Α	
$M_{T2\perp}^{220}(0)$	506.7	509 ± 211	+0.01	С	
$M_{T2}^{220}(0)$		528 ± 56	+0.38	В	
$M_{T2\perp}^{220}(E_b)$	7393.1	7484 ± 106	+0.86	В	
$M_{T2}^{220}(E_b)$		7456 ± 70	+0.90	В	
$M_{T2\perp all}^{210}(0)$	312.8	249 ± 52	-1.23	В	
$M_{T2\perp \mathrm{all}}^{2\overline{10}}(E_b)$	7158.2	$\textbf{7129} \pm \textbf{40}$	-0.73	Α	

NO FALSE MEASUREMENTS!

Stony Brook University David Curtin EdgeFinder 21/25


Mass Measurements

Projection of Gaussian Density onto m2 axis.

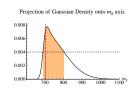

$$m_{\tilde{g}}^{meas} = 592 \pm 69 (525)$$

Projection of Gaussian Density onto m_k axis.

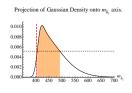
$$m_{\tilde{b}_{*}}^{meas} = 393 \pm 57 \ \ (341)$$

Projection of Gaussian Density onto my axis.

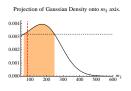
$$m_{\tilde{b}_1}^{meas} = 393 \pm 57 \ (341) \qquad m_{\tilde{\chi}_1^0}^{meas} = 210 \pm 92 \ (98)$$


Gluino and sbottom masses measured with $\sim 10\%$ precision!

Blind Study


Want to verify our methods with a different spectrum:

$m_{\tilde{t}_1}$	$m_{ ilde{t}_2}$	$\sin heta_{ ilde{t}}$	$m_{\widetilde{b}_1}$	$m_{ ilde{b}_2}$	$\sin heta_{ ilde{b}}$	$m_{ ilde{g}}$	$m_{ ilde{\chi}^0_1}$
1016	1029	0.76	404	1012	1	703	84


- Somewhat more luminosity to get same number of events.
 Analysis otherwise identical to first study.
- Did not know the spectrum prior to completing analysis!
- Worked equally well:

 $m_{\tilde{g}}^{meas} = 746 \pm 57 \ (703)$

$$\textit{m}_{\tilde{b}_{1}}^{\textit{meas}} = 449 \pm 44 \ \ (403)$$

$$m_{ ilde{\chi}_1^0}^{meas} = 155 \pm 92 ~~(84)$$

Conclusion

Conclusion

- Edge-to-Bump Method: MC-based edge detection and measurement that addresses most of the edge-measurements problems that were prohibitive to LHC application (bias, systematic error, self-determined sensible uncertainties).
- The EdgeFinder Mathematica package is a publicly available proof-of-concept of the Edge-to-Bump method. Demonstrated utility, but obviously much room for extension & optimization.
- We showed for the first time that M_{T2} can be used to determine all the masses in a fully hadronic 2-step symmetric decay chain with maximal combinatorial ambiguity.
 - KE-method of deducing decay chain assignment: extremely simple & high-yield.
 - Application to M_{T2} : Simultaneous use of 2+ methods of reducing combinatorics background allows for rejection of fake edges & artifacts.

Conclusion

UPDATE:

These methods might find their way into an upcoming CMS analysis.

So stay tuned :).

Stony Brook University David Curtin EdgeFinder 25/25