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Problem:

You have some kinematic distribution (Mjj , MT2, . . . )

→

Don’t know the global shape, but you want to measure the
position of the edge/endpoint because it gives you some
information about the masses in the decay chain.

How do you measure this edge?
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Old Solution
Construct a fit function (commonly a linear kink, maybe with
detector-motivated smearing, or something else depending on the
shape of your edge) and fit to find the edge:

This has a lot of problems:
- The fit function is only an approximation to the shape of some subset of the

distribution near the edge feature. Which subset? Where to fit? How good an
approximation?

- This systematic error will not be included in the statistical uncertainty of the fit

- Do you introduce bias by picking a fit-domain?

- Dreaming up more clever fit functions won’t solve this problem. Edges
are difficult and ill-defined features.
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Why Care?
1 Edge Measurements are difficult but important.

New kinematic variables like MT2 are extremely powerful and we would
like to use them to perform mass measurements at the LHC.

Unfortunately they are very fragile to contamination and wash-out,
making their endpoints/edges difficult to measure.

Need a reliable way to extract low-quality edges that accurately includes
the uncertainty in their position.

2 Edge Measurements are not just difficult but deceiving!
Fake measurements can arise from combinatorics, cut artifacts,
background, low statistics . . . . Worst-Case Scenartio!

You can deal with the false-positive problem by using two ‘orthogonal’
ways of cleaning up your distribution, measuring all the edges and only
keeping those where both methods agree. (Examples later.)

This requires a way of extracting all the edges from a distribution without
bias, stressing accurate uncertainties (otherwise we have no concept of
two edge measurements ’agreeing’ with each other).
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New Solution

Objective
Find all the edges in a distribution, find their uncertainties, include
systematic errors, do it automatically (no bias), and use as much or
as little information about the shape of the edge as we want.
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EdgeFinder



Non-Deterministic Edge Measurement

Idea: a ‘Monte-Carlo’ based approach.
Come up with a fit function that includes as much or as little info as you’d like
(linear kink, linear kink + smearing, . . . )

Generate a lot of random fit domains over your data (no bias)

Fit your function over each fit domain. Each fit returns a possible edge position.
(Could weigh it with a goodness-of-fit test. )

→ Build up a distribution of found edges.

True edges show up as peaks. You’ve just turned edge measurement into
bump hunting.

Finds all the edges without bias.

Width of peaks give uncertainties that includes just about all possible sources.
Self-measuring measurement resolution!

This Edge-to-Bump Method obviously needs more exploration &
verification, but let’s see how it works in a simple proof-of-concept.
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Edge-to-Bump Method
Step-by-Step:

1. Fit a simple kink function (no smearing) 1000’s of times to
random subdomains of data (without domain length or position
bias).

−→ Obtain Kink
Distribution

2. Detect Peaks in Kink Distribution→ Edge Detection.

−→
Scan over peak width
w looking for 3σ ex-
cesses in central vs
side bins
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Edge-to-Bump Method

3. Turn these found peaks into edge measurements by taking the
mean & standard deviation of the edge distribution around the
peak:

→

(The absence of an edge is signaled by the absence of clear
peaks in the kink-distribution. Works very reliably.)
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Example

100 200 300 400 500 600
Mbb

200

400

600

800

1000
ð�10 GeV

Mbb Distribution

Expected Edge at 382.3 GeV

100 200 300 400 500 600
Mbb

200

400

600

800

1000

ð�10 GeV
Kink Distribution: unfiltered HlightL and filtered HdarkL

8000 ® 3526 Kinks

Filter Parameters:
Lmin = 100 GeV
Nmin = 500

100 200 300 400 500 600
Mbb0

10

20

30

40

50

60

70
w

Detected Peak Ranges

100 200 300 400 500 600
Mbb0

10

20

30

40

50

60

70
w

Confidence Level Intervals of Edge Measurements

Edge Measurement:
391.9 ± 10.3 GeV
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Possible Extensions

Main Idea: analyze a distribution of fits rather than a single fit.

One could imagine much more sophisticated ways of analyzing
the distribution of fits, can almost treat them like “events”
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Filter Parameters:
Lmin = 100 GeV
Nmin = 500 −→

→ Could also include a statistical weight for each found edge.

The method is completely general: to detect different kinds of
features just use different fit functions.
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EdgeFinder

Publicly available Mathematica implementation of the
Edge-to-Bump method:
http://insti.physics.sunysb.edu/~curtin/edgefinder/

Simple proof-of-concept: many refinements & optimizations
possible.

We demonstrate its utility in a few collider studies (including
blind verification) by measuring all the masses in a fully
hadronic 2-step symmetric decay chain with maximal
combinatorial ambiguity:
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Practical Demonstration

Use MT 2 endpoints to measure all the masses in

Combinatorial worst-case!



But let’s introduce MT 2 first. . .

Some useful MT2 references:

Barr, Lester, Stephens ’03 [hep-ph/0304226] (old-skool MT2 review)

Cho, Choi, Kim, Park ’07 [0711.4526] (analytical expressions for MT2

event-by-event without ISR, MT2-edges)

Burns, Kong, Matchev, Park ’08 [0810.5576] (definition of MT2-subsystem
variables, analytical expressions for endpoints & kinks w. & w.o. ISR)

Konar, Kong, Matchev, Park ’09 [0910.3679] (Definition of MT2⊥ to project out
ISR-dependence)

(More in the paper.)



Classical MT 2 Variable
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If pT
N1, pT

N2 were known, this
would give us a lower bound on mX

However, we only know total ~/p
T

⇒ minimize wrt all possible splittings,
get ‘worst’ but not ‘incorrect’ lower
bound on mX .
We don’t even know the invisible
mass mN ! Insert a testmass m̃N .

For the correct testmass, Mmax
T 2 = mX ⇒ Effectively get mX(mN).
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Multi-Step: MT 2-Subsystem Variables

Complete Mass Determination Possible for 2+ Step Decay Chain.

Measure 3 masses. Available variables:

Mbb,

M221
T 2 , M210

T 2 , M220
T2
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MT2 combinatorics are awful. . .
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MT2 Combinatorics Problem

MT 2 is ‘powerful but fragile’, much more problematic than Mjj :

There are more wrong-sign combinations.

Edges are shallow→ less well defined, more easily washed out
(ISR, detector effects, background).

The combinatorics background has nontrivial structure
→ Fake Edges!

No one method of reducing combinatorics background works
reliably all of the time.

=⇒ Combinatorics Background doesn’t just reduce quality of edge
measurement, it can invalidate measurement completely.
Have to reject fakes!
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Golden Rule for MT 2 Measurements

Always use more than one method to reduce
combinatorics background.

Only accept endpoint measurement if they agree

For each MT2 variable we perform the following steps:

1 Apply two CB reduction methods→ two MT2 distributions.

2 Apply Edge-to-Bump to each→ two kink distributions.
3 Good quality edges in both distributions that agree?

YES: merge & accept measurement
(can increase error bars)

NO: discard variable.
(e.g. disagreeing edges, no edge in one distribution, . . . )
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Combinatorics Background: DL Method

If we’re going to analyze multi-step decay chains we need to get a
handle on combinatorics background.

Simplest thing you could do: drop largest few MT2’s per event.

For each event, the true MT2 is a lower bound for Mmax
T 2 .

If there are several MT2-possibilities per event, the largest one(s)
are more likely to be wrong.

→ Discard Them!

Works surprisingly well, some of the time.

Stony Brook University David Curtin EdgeFinder 15 / 25



Combinatorics Background: KE Method

What else could we do?

Edge in Mbb-distribution (invariant mass of decay chain) is relatively
easy to measure using Edge-to-Bump, combinatorics are benign.

−→

100 200 300 400 500 600
Mbb

200

400

600

800

1000
ð�10 GeV

Mbb Distribution

Expected Edge at 382.3 GeV

Could we make use of this Mmax
bb information?
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Combinatorics Background: KE Method

Known Mmax
bb

⇒ deduce correct decay chain assignment for 15− 30% of events.

100% purity! (Before mismeasurement & detector effects)

Extremely simple & high-yield method for determining decay
chain assignment.
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CB Reduction Example
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No one method works reliably all of the time. Sometimes they
fail, sometimes they produce fake edges.
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Now we’re finally ready for . . .

Monte Carlo Studies



First Monte Carlo Study
Apply our methods to a fully hadronic combinatorics-worst-case
scenario without other backgrounds.

Measure 3 masses. Available variables:

Mbb,

M221
T2 , M210

T2 , M220
T2

(use both ISR-binned & ⊥ versions, for zero and large testmass).

Choose a particular MSSM Benchmark Point w/o SUSY-BG.

mt1 mt2 st mb1 mb2 sb mg̃ mχ̃0
1

371 800 -0.095 341 1000 -0.011 525 98

(Already excluded by
LHC, but that doesn’t
matter for us.)

σg̃g̃ ≈ 11.6 pb @
√

s = 14 TeV. Use L = 100 fb−1 (pessimistic).

Simulate with MadGraph/MadEvent, Pythia, PDG.

Require 4 b-tags & MET > 200 GeV→ 58k Signal Events, Eliminates SM BG.
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Full MT 2 Measurement Example
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Edge Measurements
Variable Prediction Measurement Deviation/σ Quality
Mbb 382.3 391.8± 10.3 +0.93 —
M221

T2⊥(0) 303.5 240± 140 −0.45 C
M221

T2 (0) 301± 47 −0.05 A
M221

T2⊥(Eb) 7153.4 7154± 42 +0.01 A
M221

T2 (Eb) 7171± 42 +0.42 A
M210

T2⊥(0) 320.9 283± 44 −0.86 A
M210

T2 (0) 327.2± 8.7 +0.72 A
M210

T2⊥(Eb) 7239.8 7141± 54 −1.84 A
M210

T2 (Eb) 7176± 37 −1.75 A
M220

T2⊥(0) 506.7 509± 211 +0.01 C
M220

T2 (0) 528± 56 +0.38 B
M220

T2⊥(Eb) 7393.1 7484± 106 +0.86 B
M220

T2 (Eb) 7456± 70 +0.90 B
M210

T2⊥all(0) 312.8 249± 52 −1.23 B
M210

T2⊥all(Eb) 7158.2 7129± 40 −0.73 A

NO FALSE MEASUREMENTS!
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Mass Measurements
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Gluino and sbottom masses measured with ∼ 10% precision!
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Blind Study
Want to verify our methods with a different spectrum:

mt̃1
mt̃2

sin θt̃ mb̃1
mb̃2

sin θb̃ mg̃ mχ̃0
1

1016 1029 0.76 404 1012 1 703 84

Somewhat more luminosity to get same number of events.
Analysis otherwise identical to first study.

Did not know the spectrum prior to completing analysis!

Worked equally well:
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= 449± 44 (403) mmeas

χ̃0
1

= 155± 92 (84)
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Conclusion



Conclusion

Edge-to-Bump Method: MC-based edge detection and
measurement that addresses most of the edge-measurements
problems that were prohibitive to LHC application (bias,
systematic error, self-determined sensible uncertainties).

The EdgeFinder Mathematica package is a publicly available
proof-of-concept of the Edge-to-Bump method. Demonstrated
utility, but obviously much room for extension & optimization.

We showed for the first time that MT 2 can be used to determine
all the masses in a fully hadronic 2-step symmetric decay chain
with maximal combinatorial ambiguity.

- KE-method of deducing decay chain assignment: extremely
simple & high-yield.

- Application to MT2: Simultaneous use of 2+ methods of reducing
combinatorics background allows for rejection of fake edges &
artifacts.
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Conclusion

UPDATE:

These methods might find their way into an upcoming CMS
analysis.

So stay tuned :).
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