

Cooling

- Perhaps 20 W of laser power incident on cathode surface (and a large fraction absorbed)
- ■Embedded solenoid may require an additional 20-60W without adverse heating of cathode.

Options:

- ■Pass coolant (SF6?) into copper rod
- Copper rod is replaced by heat pipe
- Peltier cooling (TEC) of cathode locally, waste heat removed by copper rod (want thermocouples and controls)

Cooling Measurements

Measurements of thermal contact resistance between Cathode
Puck and Copper Support shows room for improvement

SF6 "coolant"

- Open bore of Copper conduction rod to allow SF6 "coolant" deep into vacuum space of gun
- Flange pair on top flange
- Could always refrigerate SF6 to further reduce cathode temperature

Heat Pipes

- Replace copper cooling stalk with heat pipe
- Phase change cycle leads to extremely high heat transfer from end to end
- Lots of risks: bakability, hermeticity (into SF6 space)

Thermoelectric Coolers

- Started working with small TEC to control laser fiber temperature
- By breaking the inner copper electrode support and inserting a ring of TEC could reduce / control the cathode temperature
- Power required (with all related problems)
- •Heat Sink for waste heat required

Jan. 6, 2011

FRL Phase 1B Gun External Review

- Probably need to develop better scheme for removing 100W
- Does not need to be developed immediately but could be developed and replace static copper conduction rod
- ☐ Which directions to follow?