lectron cloud instabilit n low emittance rings

H. Jin (Postech), K. Ohmi (KEK) ECLOUD'10@Cornell Oct. 8-12, 2010

Introduction

- Fast head-tail instability in CesrTA and SuperKEKB.
- Multibunch instability

instability

- Coherent motion between inner bunch and electron cloud.
- Electrons oscillate electric force inner bunch along z, $\omega_e = \sqrt{\frac{\lambda_p r_e c^2}{\sigma_v (\sigma_x + \sigma_y)}}$
- The instability is characterized by $\omega_e \sigma_z/c$, number of electron oscillation along the bunch.

(Balance of growth and Landau damping) ability condition for $\exists_{e} \int_{z}/c > 1$ $\omega_{e} = \sqrt{\frac{\lambda_{p}r_{e}c^{2}}{\sigma_{y}(\sigma_{x} + \sigma_{y})}}$ $\frac{\sqrt{3}\lambda_{p}r_{0}\beta}{\gamma \omega_{e}\sigma_{z}/c} \frac{|Z_{\perp}(\omega_{e})|}{Z_{0}} = \frac{\sqrt{3}\lambda_{p}r_{0}\beta}{v_{s} \gamma \omega_{e}\sigma_{z}/c} \frac{KQ}{4\pi} \frac{\lambda_{e}}{\lambda_{p}} \frac{L}{\sigma_{y}(\sigma_{x} + \sigma_{y})}$ $\sum_{e=l_{e}/2 \Box \int_{x}\int_{y}$

$$\rho_{e,th} = \frac{2\gamma v_s \,\omega_e \sigma_z/c}{\sqrt{3}KQr_0\beta L}$$

Origin of Landau damping is momen compaction

$$v_s \sigma_z = \alpha \sigma_\delta L$$

min(Q_{nl}, $\boxed{}_{e}$ ($_{z}$ /c)

 Q_{nl} =5-10?, depending on the nonlinear interaction.

haracterizes cloud size effect and pinching.

 \int_{z}/c^{2} 12-20 for damping rings.

Parameters

Table 1: Basic parameters of existing positron rings and ILC damping ring

		KEKB	PEP-II	Cesr-TA/5	Cesr-TA/2	ILC-DR	SuperKEKB
Circumference	<i>L</i> (m)	3,016	2,200	768	768	6,414	3016
Energy	E	3.5	3.1	5.0	2.1	5.0	4.0
Bunch population	$N_{+}(10^{10})$	8	8	2	2	2	9
Beam current	<i>I</i> ₊ (A)	1.7	3.0	-	-	0.4	3.6
Emittance	$\varepsilon_x(nm)$	18	48	40	2.6	0.5	2
Momentum compaction	$\alpha(10^{-4})$	3.4		62.0	67.6	4.2	3.5
Bunch length	$\sigma_z(\text{mm})$	6	12	15.7	12.2	6	6
RMS energy spread	$\sigma_E / E(10^{-3})$	0.73		0.94	0.80	1.28	0.8
Synchrotron tune	ν_s	0.025	0.025	0.0454	0.055	0.067	0.0256
Damping time	$ au_x$	40	40		56.4	26	43

Table 2: Threshold of the ILC damping ring and other rings

		KEKB ¹	KEKB ²	PEP-II	CesrTA-5	CesrTA-2	ILC-DR	SuperKEK
ulation	$N_{+}(10^{10})$	3	8	8	2	2	2	9
ent	$I_{+}(A)$	0.5	1.7	3.0	-	-	0.4	3.6
cing	$\ell_{sp}(ns)$	8	7	4	4	4	6	4
equency_	$\omega_o/2\pi$ (GHz)	28	40	15	9.6	43	100	189
e	$\omega_e \sigma_z/c$	3.6	5.9	3.7	3.2	11.0	12.6	23.8
	$\rho_e \ (10^{12} \ { m m}^{-3})$	0.63	0.38	0.77	7.40	1.70	0.19	0.27
at $ ho_e$	$\Delta \nu_{x+y}$	0.0078	0.0047	0.0078	0.0164	0.009	0.011	0.003

- Electron clouds are located several or many s position in a ring.
- Potential solver based on 2D FFT.
- Beam is sliced into 30-100 pieces $(>]_{e}(_{7}/C).$

$I=1.3mA, N=2x10^{10}$

- Simulation $\rho_{th}=1\times10^{12}$ m⁻³.
- Analytic $\rho_{th}=1.7 \times 10^{12} \text{ m}^{-3}$.

 $\rho_{th}=0.8 \times 10^{12} \text{ cm}^{-3}$

High(2GeV) and low(5GeV) ω_eσ_z

 $\rho_{th} = 4 \times 10^{12} \text{ cm}^{-3}$

simulation

• High(2GeV) and low(5GeV) $\omega_e \sigma_z/c$.

Sinulated Unstable spectra

Lower sideband is dominant for high $\omega_e \sigma_z$ (low emittance).

2 GeV

Upper sideband is dominant for 5GeV 5 GeV

Sinulated beam spectra

Lower sideband is seen for high $\omega_e \sigma_z/c$, 2GeV.

• Upper sideband is seen for low $\omega_e \sigma_z/c$, 5 GeV.

back

Model, feedback with one turn delay

$$\left(\begin{array}{c}y\\y'\end{array}\right)_{n,+}=\left(\begin{array}{c}y\\y'\end{array}\right)_{n,-}-\alpha M\left(\begin{array}{c}\langle y\rangle\\\langle y'\rangle\end{array}\right)_{n-1,+}$$

- M: revolution matrix
- α: feedback damping rate
- n: n-th turn
- ±: after or before feedback kick

$\frac{D \text{ Suppresses the instability}}{\text{little}(2\text{GeV})}$ $\frac{1}{P_{e^{-0.8x10^{12}}}}$ (a) High $\omega_e\sigma_z/c$, 2GeV.

 Dipole motion is suppressed a little, threshold increase a little.

(5GeV)

- Low $\omega_e \sigma_z/c$, 5GeV.
 - Dipole motion is suppressed but hea tail motion remains.

SuperKEKB

Y. Susaki, K. Ohmi, IPAC1

This simulation is for old parameter vs=0.12. Prese vs=0.26. The threshold sh be twice higher.

- Simulation $\vec{p}_{th}=2.1 \times 10^{11} \text{ m}^{-3}$.
- Analytic $\rho_{th}=1.1 \times 10^{11} \text{ m}^{-3}$.
- Target $\rho_e < 1 \times 10^{11} \text{ m}^{-3}$
- Update parameters (both for CesrTA and SuperKEKB).
- Take care of high β section. Effects are

Incoherent effect in CesrTA

 Emittance growth due to nonlinear interaction with electron cloud

 Integrated the nonlinear terms with multip function and cos (sin) of phase difference

 $M = e^{-:\phi_1:} e^{-:F_{12}:} e^{-:\phi_2:} e^{-:F_{23}:} e^{-:\phi_3:} e^{-:F_{34}:} e^{-:\phi_4:} e^{-:F_{45}:} e^{-:\phi_5:} \dots e^{-:F_{n1}:F_{n1}:} e^{-:\phi_5:} \dots e^{-:F_{n1}:F_{n1$

$$\approx \mathrm{e}^{-:F_{11}:} \exp\left(-:\sum_{i=1}^{n} \phi_i(e^{-:F_{1i}:\mathbf{x}}):\right)$$

 $kx^m \Rightarrow k\beta_i^{m/2}J^{m/2}\cos(m\Delta\psi_{1i})$

F: (non)linear lattice tr\$\overline{1}\$: cloud interaction

eV threshold

Study of multibunch instability

- Self consistent solution of the cloud build up and bunch motion.
- Wake field calculation
- Self consistent simulation
- Multi-bunch instability induces a fast bear loss, though fast head-tail instability does not.

Beam dancing with electron cloud

- Drift space
- Electrons move one way
- Bunch by bunch correlation is short, very low Q, "ec0011.f11" index 200 matrix

- In Been dancing with electron cloud
- Electrons move along the chamber surface.
- Long life time electron, high Q wake. Simu Experiment Horizontal Solenoi 20 Hori 15 0.5 0 200 400 200 400 600 800 1000 1200 1400 Mode 10 1500 Solenoi Vertical Ve 1000 50 500 200 400 600 1000 1200 800 1400

Election dance with electron cloud pillar?

"DFB2ta.f11" index 0 matrix

the pillar (stripe)

4....

formation DAFNE parameter, ~200ns

Formed pillar and then shift beam position

Pillar position shifts to beam position in ~200ns.

DFB1dx5i.f11" index 300 matrix

"DFB1dx5.f11" index

formation

 Bunch by bunch correlation of slowest mode, m=-1, will be induced.

- Characteristics of the fast head tail instability is determined by $\omega_e \sigma_z/c$.
- Appearance of upper or lower sideband, and feedback response depend on $\omega_e \sigma_z/c$.
- The threshold (2GeV) is ρ_{th}=1x10¹² cm⁻³ for simulation and 1.7x10¹² cm⁻³ for analytic.
- The threshold (5GeV) is ρ_{th}=5x10¹² cm⁻³ for simulation and 7x10¹² cm⁻³ for analytic.
- Incoherent emittance growth is week in positron machines.
- Movies for coupled bunch instability. Slowest mode is induced by electrons in bending