Feedback Control of SPS E-Cloud/TMCI Instabilities

C. H. Rivetta

LARP Ecloud Contributors:
A. Bullitt¹, J. D. Fox¹, T. Mastorides¹, G. Ndabashimiye¹, M. Pivi¹, O. Turgut¹, W. Hofle², B. Savant², M. Furman³, R. Secondo³, J.-L. Vay³

¹Accelerator Research Department, SLAC
²BE-RF Group CERN
³LBNL

This work is supported by the US-LARP program and DOE contract #DE-AC02-76SF00515
1 Introduction

2 Feedback Systems - Generalities

3 R & D Plan - Progress
 - Hardware
 - Non-Linear Simulations
 - Reduced Models - Feedback Design
 - MD plans

4 Conclusions
Motivation: - Control E-cloud and TMCI effects in SPS and LHC via GHz bandwidth feedback

- Complementary to E-cloud coatings, grooves, etc. Also TMCI
- Anticipated instabilities at operating currents
- Intrabunch Instability: Requires bandwidth sufficient to sense the vertical position and apply correction fields to multiple sections of a nanosecond-scale bunch.

US LHC Accelerator Research Program (LARP) has supported a collaboration between US labs (SLAC, LBNL) and CERN

- Large R & D effort coordinated on:
 - Non-linear Simulation codes (LBNL - CERN - SLAC)
 - Dynamics models/feedback models (SLAC - Stanford STAR lab)
 - Machine measurements- SPS MD (CERN - SLAC - LBNL)
 - Hardware technology development (SLAC)
Simple Observations from SPS Studies

- SPS MDs: 2 in 2008, 1 in 2009, recently in 2010
- June 2009, SPS injection 26GeV, Charge: 1E11p/bunch, separation 25 nsec.,
- Time domain Vertical pick-up signals: SUM and DIFF - Extracted Vertical displacement (Data sampled 20 ps/point)

Two batches: First 72 bunches stable, (e.g. bunch 47), second set of 72 bunches E-cloud instabilities, (e.g. bunch 119). Time span: 2.6 nsec.

movie Vert. Displacement
Simple Observations from SPS Studies

Tune shift

- Different time evolution of the vertical displacement for different sections of the bunch.
- Tune shifts within the bunch due to E-cloud, \((\text{Tune} = 0.185)\)

Movie rms tune
Feedback System

Basics

- Feedback control is required when the original system is unstable or when performance cannot be achieved due to uncertainties in the system characteristics.
- Feedback control changes the dynamics of the original system - stabilize - improve performance.

- Requirement for Feedback Control: Provide stability and satisfactory performance in the face of disturbances, system variations, and uncertainties.

Diagram:

- Receiver + Proc. Channel
- Amplifier + Kicker
- Beam
- Vert. Displ.
- Vc Control signal
- Vb Momentum Kick
- Vert. Disp. Multiple samples of the vertical position along the bunch
Feedback Systems

Requirements

- Original system unstable - Minimum gain for stability
- Delay in control action - Maximum gain limit
- Bunch Dynamics Nonlinear - tunes/growth rates change intrinsically
- Beam Dynamics change with the machine operation
- noise-perturbations rejected or minimized
- Vertical displacement signals has to be separated from longitudinal/horizontal signals
- Control update time $= T_{\text{revolution}}$
Plan - Progress

R & D lines

- Goal is to have a minimum prototype to fully understand the limitations of feedback techniques to mitigate E-cloud TMCI effects in SPS.

R & D areas

- Study and Development of Hardware Prototypes
- Non-Linear Simulation Codes - Real Feedback Models - Multibunch behavior
- Development and Identification of Mathematical Reduced Dynamics Models for the bunch - Control Algorithms
- MD Coordination - Analysis of MD data - Data Correlation between MD data / Multiparticle results
R & D areas

Hardware - Complexity? Scale?

Bunch Spectrum

Frequency spectrogram of bunch oscillations suggests for this case that a 4 Gsamples/sec (Nyquist limit) could be enough to measure the most unstable modes.

stack 1-bunch 47

stack 2 - bunch 47 (bunch 119)
R & D areas

Hardware - Complexity? Scale?

- Assuming **16 samples/bunch/Turn, 72x6 bunches/Turn, 16 Multiplications/Accumulate (MACs)** operations per sample (Proc. Ch. 16 taps FIR).
 - **SPS = 6*72*6*16*43Khz = 5 GigaMACs/sec**
 - KEKB iGp system = 8 GigaMACs/sec, (existent)
 - Dynamic bandwidth to process 4 Gs/sec

- **Amplifier - Kicker**: bandwidth limit about 1-2GHz, Power-Gain ??
 - Installed Kicker: Limited in bandwidth and power
 - Study option for kicker

- **Receiver - Pick-up**
 - Installed Pick-up: No major limitations - Propagation modes $\sim 1.7\, MHz$
 - Study receiver topology - noise / spurious perturbations floor
Can we build a ‘small prototype’ style feedback channel? What fits in our limited LARP hardware budget? Develop for driving beam (identification) and closed-loop tests in SPS

Idea - build 4 GS/sec. channel via evaluation boards and SLAC-developed Vertex 5 FPGA processor
R & D areas

Hardware - Kicker / Pick-up

- Amplifier - Kicker. Critical missing elements

Test power amplifiers, set cable plant, loads for existent kicker.

Drive the bunch with the actual hardware.

- Identify the Kicker technology as an accelerated research item,
 Study best kicker topology for prototype.
- Kicker design/fab requires joint CERN/US plans.
- Design kicker and vacuum components for SPS fabrication and installation
Non-Linear Simulations

- Multiparticle simulation codes have been a very useful test-bench for designing MD analysis algorithms and tools.
- Important for the development of mathematical reduced dynamics models of the bunch.
- **Next step related to feedback control system:** Add realistic models representing the receiver, processing channel, amplifier and kicker hardware. **Test-bench to test feedback control system design.**

![Diagram](image_url)

- **J-L Vay - R.Secondo talks**
Plan - Progress

Mathematical Modeling and Feedback Design

- What is the best control strategy??
 - Unique robust control
 - Scheduled robust control
 - Adaptive controller
 - Complexity: One control algorithm per sample or Multi-input/Multi-output algorithms.
- Control Design using Model-Based Design
 - Mathematical reduced dynamics models of the bunch.
 - Requires identification of the bunch dynamics (Measurement of the response to a given excitation)
Identification of Internal Bunch Dynamics: Reduced Model

- Characterize the bunch dynamics - same technique for simulations and SPS measurements
- Critical to design the feedback algorithms
- Ordered by complexity, the reduced models could be

- Linear models with uncertainty bounds (family of models to include the GR/tune variations)
- 'Linear' with variable parameters (to include GR / tune variations - Synchrotron osc. - Different op. cond.)
- Non-linear models
Use the reduced model, with realistic feedback delays and design a simple FIR controller

- Each slice has an independent controller
- This example 5 tap filter has broad bandwidth - little separation of horizontal and vertical tunes
- But what would it do with the beam? How can we estimate performance?
Plan - Progress

Root Locus Study - Tune shifted from 0.185 to 0.21

- We study the stability for a range of tunes
- This filter can control both systems - Maximum damping is similar in both cases
- Is this realistic case to design? We need more data from simulations and MD
- We need models for dynamics vs. beam energy, interaction with ramp
MD plans

- To validate multiparticle simulation codes, we are planning more MDs in SPS. It will help to have good test-bench multiparticle simulators to test feedback designs.

- In this MD we want to drive the bunch using the existent SPS kicker. Currents below E-cloud threshold (stable bunch).
 - Important to test the power level and kicker gain for prototyping new kicker.
 - Test of SLAC hardware - Back-end - Synchronization with SPS machine - Timing.
 - If it is possible to drive different sections of the bunch, test identification algorithms.
 - Calculate reduced dynamic model of bunch.
 - Perform bunch model identification at current levels near the instability threshold.

- Plan next MD to stabilize a few bunches
Conclusions

Summary - 2010 LARP Ecloud/TMCI effort

- Lab effort - development 4 GS/sec. excitation system for SPS
 - Modify existing system to synchronize with selected bunches - data for system identification tools
 - Identify critical technology options, evaluate difficulty of technical implementation
 - Explore 4 Gs/sec. ‘small prototype’ feedback channel for 2011 fab. and MD use
 - Evaluate SPS Kicker options: CERN request, 2012 shutdown window

- Understand E-cloud dynamics via simulations and machine measurements
 - Participation in E-Cloud studies at the SPS (July 2010) - Data under Analysis
 - Analysis of SPS and LHC beam dynamics studies, comparisons with E-cloud models

- Modeling, estimation of E-Cloud effects
 - Validation of Warp, Head-Tail and CMAD models, comparisons to MD results
 - Integrate realistic models of feedback system hardware in Warp, Head-Tail and CMAD simulators.
 - Comparisons with machine physics data (driven and free motion), Critical role of E-cloud simulations in estimating future conditions, dynamics
 - Extraction of system dynamics, development of reduced coupled-oscillator model for feedback design estimation
Conclusion

Request for SPS Feedback System

- What can we do for the 2012 SPS shutdown? CERN’s interest - very high.
 - Critical missing element - useful high-power kicker and power amplifier components in SPS
 - Identify the Kicker technology as an accelerated research item, design prototype kicker and vacuum components for SPS fabrication and installation
 - Kicker design/fab requires joint CERN/US plans.

- FY 2011 - Accelerated research and design report on Kicker System
 - Design report, suggested implementation, test low power lab models, RF simulation.
- FY2012 - Detailed design and fab of prototype kicker, vacuum components
- FY2013 - Installation in SPS with Amplifiers and Cable plant
 - Vacuum components essential for shutdown
- Dovetails with parallel system estimation and development of ‘quick prototype processor’
 - Model closed-loop dynamics, estimate feedback system specifications
 - Evaluate possible control architectures, implementations, via technology demonstrations
 - SPS Machine Physics studies, development of ‘small prototype’, closed loop studies stabilizing a few bunches.
Thanks to the audience for your attention!!!,Questions?