

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

49th ICFA Advanced Beam Dynamics Workshop October 8 – 12, 2010

In Situ SEY Measurements at CesrTA

D. Asner, J. Conway, S. Greenwald, J. Kim, Y. Li, V. Medjidzade, T. Moore, M. Palmer, C. Strohman

Introduction

Measuring secondary electron yields (SEYs) on technical surfaces in accelerator vacuum systems provides essential information for many accelerator R&D projects, such as the ILC Damping Rings, regarding to electron cloud growth and suppression. As a part of CesrTA research program, we developed and deployed SEY in-situ measurement systems. Two such SEY systems were installed to expose samples with direct and scattered synchrotron radiation (SR), and the SEYs of the samples were measured as a function of SR dosages. In this poster, we describe the in-situ SEY measurement systems and the initial results on bare aluminum (6061-T6) and TiN-coated aluminum samples.

(electrically insulated

(inside crotch)

- Hardware components controlled remotely via LabVIEW software on PC
- Gun energy cycled from 20-1500eV with current ~2nA and beam size ~0.5mm
- I_n is measured with 150V bias before and

Sample Inserted for Exposure

Sample retracted for measurement

- 2 samples in beam pipe, one horizontal in the radiation strip, one at 45° beneath radiation strip.
- Samples are retracted periodically during accelerator accesses and their SEYs measured in situ.
- SEY at 9 grid points on sample measured (right), with incident angles 20° (pts. 1, 2, 3), 25° (pts. 4, 5, 6), & 30° (pts. 7, 8, 9).
- A typical measurement (~ 1.5-hr) can be easily accomplished in

from crotch)

after **I**_t is measured **I**, measured with -20V bias

ENON a normal accelerator access, to minimize disruption to CESR operations.

Control & Data Acquisition System

- Hardware is controlled by LabVIEW GUI developed at Wilson Lab, incorporating existing Kimball Physics Electron Gun and Keithley 6487 Picoammeter software.
- Developed software includes:
 - -Synchronizing gun power supply voltages and bias voltages
 - -Automating electron beam energy scanning and raster scan subroutine while recording current from ammeter

-Automating SEY calculation and plotting subroutine

Conclusions & Future Work

- Measured the SEYs from 6061 alloy are much lower than reported values from 6063 alloy. We plan to do comparison using our *in situ* systems • Measure the SEY of a sample cut from an extruded aged (30+ years) 6063 aluminum CESR chamber
- Comparing SEY while suppressing E-cloud with solenoid magnetic field generated.
- Measuring *in situ* various coated samples (such as NEG thin film, amorphous/diamond-like carbon, etc) provided by collaborators
- Building and testing *in situ* SEY systems for the FNAL Main Injector

Supported by the National Science Foundation (Contract No. PHY-0734867) and the Department of Energy (Contract No. DE-FC02-08ER41538)

LEPP, the Cornell University Laboratory for Elementary-Particle Physics, has joined with CHESS to become the Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE). LEPP's primary source of support is the National Science Foundation. Visit us on the web at: www.lepp.cornell.edu

