In Situ SEY Measurements at CesrTA

D. Asner, J. Conway, S. Greenwald, J. Kim, Y. Li, V. Medjizdaze, T. Moore, M. Palmer, C. Strohman

Introduction
Measuring secondary electron yields (SEYs) on technical surfaces in accelerator vacuum systems provides essential information for many accelerator R&D projects, such as the ILC Damping Rings, regarding to electron cloud growth and suppression. As a part of CesrTA research program, we developed and deployed SEY in-situ measurement systems. Two such SEY systems were installed to expose samples with direct and scattered synchrotron radiation (SR), and the SEYs of the samples were measured as a function of SR dosages. In this poster, we describe the in-situ SEY measurement systems and the initial results on bare aluminum (6061-T6) and TiN-coated aluminum samples.

Horizontal In Situ SEY Station in L3 of CesrTA

System Schematic

- Electron gun (inside crotch)
- Magnetic manipulator (electrically insulated from crotch)
- Sample
- Beam pipe

SEY = \(I_p + I_{SET} \)

- Hardware components controlled remotely via LabVIEW software on PC
- Gun energy cycled from 20-1500eV with current \(-2\)A and beam size \(-0.5\)mm
- \(I_p \) is measured with 150V bias before and after \(I_p \) is measured
- \(I_p \) measured with -20V bias

Initial Results – SEY vs. Beam Doses

- TiN-Al Sample
- Al6061-T6 Sample

SEY Peak Beam Processing – TiN-Al

- Data shows a steady (\(-0.05%/\) decrease in SEY peak with increased beam dosage (D) for both types of samples
- \(45^\circ \) system has a consistently higher SEY than the horizontal system for TiN-coated sample
- Measured SEY peak is dependent on incident angle (left figure)

SEY Peak Beam Processing – Al6061-T6

Control & Data Acquisition System

- Hardware is controlled by LabVIEW GUI developed at Wilson Lab, incorporating existing Kimball Physics Electron Gun and Keithley 6487 Picoammeter software.
- Developed software includes:
 - Synchronizing gun power supply voltages and bias voltages
 - Automating electron beam energy scanning and raster scan subroutine while recording current from ammeter
 - Automating SEY calculation and plotting subroutine

Conclusions & Future Work

- Measured the SEYs from 6061 alloy are much lower than reported values from 6063 alloy. We plan to do comparison using our in-situ systems
- Measure the SEY of a sample cut from an extruded aged (30+ years) 6063 aluminum CESR chamber
- Comparing SEY while suppressing E-cloud with solenoid magnetic field generated.
- Measuring in situ various coated samples (such as NEG thin film, amorphous/diamond-like carbon, etc) provided by collaborators
- Building and testing in situ SEY systems for the FNAL Main Injector

Supported by the National Science Foundation (Contract No. PHY-0734867) and the Department of Energy (Contract No. DE-FC02-08ER41538)