QuickTime™ and a decompressor are needed to see this picture.

Numerical Modeling of E-Cloud Driven Instability and its Mitigation using a Simulated Feedback System in the CERN SPS*

J.-L. Vay, J. M. Byrd, M. A. Furman, R. Secondo, M. Venturini - LBNL, USA J. D. Fox, C. H. Rivetta - SLAC, USA; W. Höfle - CERN, Switzerland

- Simulation codes and benchmarking
- Application to the modeling of e-cloud effects in the SPS
 - beam dynamics: 2 bunches
 - beam dynamics + EC buildup: 1 batch of 72 bunches
 - comparison with experimental data
 - feedback model
- Conclusion

Warp: a parallel framework combining features of plasma (Particle-In-Warp) and accelerator codes

- Geometry: 3D (x,y,z), 2D-1/2 (x,y), (x,z) or axisym. (r,z)
- Python and Fortran: "steerable," input decks are programs
- Field solvers: Electrostatic/Magnetostatic FFT, multigrid; AMR; implicit

Electromagnetic - Yee, Cole-Kark.; PML; AMR

- Parallel: MPI (1, 2 and 3D domain decomposition)
- Boundaries: "cut-cell" --- no restriction to "Legos"
- Lattice: general; non-paraxial; can read MAD files
 - solenoids, dipoles, quads, sextupoles, linear maps, arbitrary fields, acceleration
- Bends: "warped" coordinates; no "reference orbit"
- Particle movers: Boris, large time step "drift-Lorentz", novel relativistic Leapfrog
- Reference frame: lab, moving-window, Lorentz boosted
- Surface/volume physics: secondary e⁻/photo-e⁻ emission, gas emission/tracking/ionization
- Diagnostics: extensive snapshots and histories
- Misc.: trajectory tracing; quasistatic & steady-flow modes; space charge emitted emission;
 "equilibrium-like" beam loads in linear focusing channels; maintained using CVS repository.

Warp quasistatic model similar to HEADTAIL, PEHTS, QuickPIC, CMAD.

Quasistatic mode recently upgraded to handle multiple bunches using MPI groups

- MPI groups:
 - 1 bucket = 1 group;
 - each group diagnoses beam in its own bucket
- Allowed for minimal changes to the code.

- Simulation codes and benchmarking
- Application to the modeling of e-cloud effects in the SPS
 - beam dynamics: 2 bunches
 - beam dynamics + EC buildup: 1 batch of 72 bunches
 - comparison with experimental data
 - feedback model
- Conclusion

Warp benchmarked with Headtail w/ LHC parameters

circumference	C	$26.659\mathrm{km}$
beam energy	E_b	450 GeV
bunch population	N_b	$1.1 imes10^{11}$
rms bunch length	σ_z	$0.13 \mathrm{m}$
rms beam sizes	$\sigma_{x,y}$	0.884, 0.884 mm
beta functions	$\beta_{x,y}$	$66.,71.54\mathrm{m}$
betatron tunes	$Q_{x,y}$	64.28, 59.31
chromaticities	$Q'_{x,y}$	1000., 1000.
synchrotron tune	ν	0.59
momentum compaction factor	α	$0.347 imes10^{-3}$
rms momentum spread	δ_{rms}	$4.68 imes 10^{-2}$

- Simulation codes and benchmarking
- Application to the modeling of e-cloud effects in the SPS
 - beam dynamics: 2 bunches
 - beam dynamics + EC buildup: 1 batch of 72 bunches
 - comparison with experimental data
 - feedback model
- Conclusion

SPS at injection

- Bunch
 - energy
 - population
 - RMS length
 - momentum spread
 - transverse normalized emittance
 - longitudinal normalized emittance
- $-\,\bot$: continuous focusing
 - beta functions
 - betatron tunes
 - chrom.
- -// : continuous focusing
 - momentum compaction factor
 - cavity voltage
 - cavity harmonic number
- assumed 100% dipole
- 10 interaction stations/turns

- W=26. GeV $N_p=1.1\times10^{11}$ $\sigma_z=0.23$ m (Gaussian profile) $\delta p/p=2\times10^{-3}$ $\varepsilon_x=\varepsilon_y=2.8$ mm.mrad $\varepsilon_z=0.3$ eV.s
- $\beta_{x,y}$ = 33.85, 71.87 $\nu_{x,y}$ = 26.13, 26.185 $Q_{x,y}$ =0.,0.

 $\alpha = 1.92 \times 10^{-3}$

V = 2 MV

h = 4620.

- Simulation codes and benchmarking
- Application to the modeling of e-cloud effects in the SPS
 - beam dynamics: 2 bunches
 - beam dynamics + EC buildup: 1 batch of 72 bunches
 - comparison with experimental data
 - feedback model
- Conclusion

Ecloud`10, Ithaca, NY, Oct 8-12, 2010

E-cloud feedback simulations - Vay et al.

Ecloud`10, Ithaca, NY, Oct 8-12, 2010

E-cloud feedback simulations - Vay et al.

Ecloud`10, Ithaca, NY, Oct 8-12, 2010

E-cloud feedback simulations - Vay et al.

Ecloud`10, Ithaca, NY, Oct 8-12, 2010

Electrons after 500 turns

Bunches 35 and 36 after 500 turns

Ecloud`10, Ithaca, NY, Oct 8-12, 2010

- Simulation codes and benchmarking
- Application to the modeling of e-cloud effects in the SPS
 - beam dynamics: 2 bunches
 - beam dynamics + EC buildup: 1 batch of 72 bunches
 - comparison with experimental data
 - feedback model
- Conclusion

- 72 bunches*300k macro-particles/bunch = ~22M macro-particles/batch
- 72 bunches = 360 buckets
 - 360*64 cells ~23,000 cells longitudinally
 - 100k macro-electrons/slice*23k=2.3 billion macro-electrons
- Assuming order 1µs/macro-particle push and 8 CPUs/bucket = 2880 CPUs, ⇒ order hours runtime for 1000 turns with 10 interaction stations/turn
- 2880 CPUs for a few hours readily available on 38,122 CPUs NERSC Cray Franklin
- Phase II of NERSC Cray Hopper (2011) will have 153,408 CPUs

0.25 Turn 0 Turn 200 Turn 400 0.20 Turn 600 [×10¹²m⁻³] Turn 800 0.15 Turn 1000 0.10 Ľ 0.05 0.00 1.0 2.0 0.5 0.0 1.5 Time [µs]

Note: density averaged over entire chamber. Local density is higher.

Fast rising instability develops for bunches 22 and + Spectrum content mostly <0.5GHz

Average fractional tune

Vertical (Y)

Fractional tune over turns 0-100

Vertical (Y)

- Simulation codes and benchmarking
- Application to the modeling of e-cloud effects in the SPS
 - beam dynamics: 2 bunches
 - beam dynamics + EC buildup: 1 batch of 72 bunches
 - comparison with experimental data
 - feedback model
- Conclusion

Comparison with experimental measurements

- Separation in two parts, core and tail, with similar tune shift
- Effect appears earlier and is stronger in simulations, suggesting that the electron density might be higher than in experiment

Experiment

Warp-Posinst

bunch # 24 Spectrum

500

Turn

- Both expt. and sim. show activity level inversely proportional to frequency
- Interesting difference: instability grows in simulation but is already there at turn 0 in experiment

10

Ō

-10

-20

-30

-40

-50

1000

- Simulation codes and benchmarking
- Application to the modeling of e-cloud effects in the SPS
 - beam dynamics: 2 bunches
 - beam dynamics + EC buildup: 1 batch of 72 bunches
 - comparison with experimental data
 - feedback model
- Conclusion

Bunches transverse internal structure has fairly long wavelength component

- Can a feedback system resolving the bunch control the instability?
- What characteristics are needed, (amplitude, frequency range, noise level, delay, ...)?

Kick in transverse velocity $\Delta v_y = (q/\gamma m) E_f L_f / v_z$

• E_f is set from estimated velocity offset δv_y : $E_f = g \, \delta v_y \, (\gamma m/q) \, v_z / L_f \, (0 < g \le 1)$

• **predicts** $y'(t) = \delta v_y / v_z$ from records of centroid offsets at two previous turns $y_{i-1}(t)$ and $y_i(t)$ using **linear maps**, ignoring longitudinal motion and effects from electrons

$$y'_{i+\xi} = \frac{\left(cc_{\xi} - ss_{\xi}\right)y_i - cy_{i-1}}{\beta_y s}$$

with
$$\begin{cases} c = \cos(2\pi Q_y) & c_{\xi} = \cos(2\pi\xi Q_y) \\ s = \sin(2\pi Q_y) & s_{\xi} = \sin(2\pi\xi Q_y) \end{cases}$$

In following results, $\xi=1$. (for $\xi=0$, same as Byrd PAC95 and Thompson et PAC09)

Runs with 5 different digital filters with cutoffs (-3 dB) around 250, 300, 350, 450 and 575 MHZ.

With these filters, cutoff>450 MHz needed for maximum damping.

Experiment will use FIR filter (see talks from C. Rivetta and R. Secondo)

- Fully self-consistent simulations of bunch trains including e-cloud buildup, its effect on the bunches and inter bunch coupling are feasible on today's supercomputers.
- Applied to the modeling of SPS batch of 72 bunches, toward a detailed understanding of the dynamics and control of beam instability via feedback systems.
- Some qualitative and semi-quantitative agreement with experiment.
- Effective damping from simulated feedback, provided that bandwidth cutoff>450 MHz.
- Future work includes: implementation of more realistic feedback models; replace smooth focusing with linear optics; etc.